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FOREWORD

This report was prepared by the Grumman Aerospace Corpora-
tion, Bethpage, New York, under Contract NAS 1-7315, entitled,
"A Research Study for the Development of a Digital Method of
Analysis of Supersonic Transport Aircraft Structures in the
Plastic Range." The work was performed by the Research Depart-
ment of Grumman Aerospace Corporation, with support from the
Computing Sciences Department.

The authors wish to acknowledge the valuable contribution of
Joseph S. Miller of the Computing Sciences Department for digital
computer programming. Thanks also go to Dr. Gabriel Isakson,
Head of the Applied Mechanics Group, for helpful comments during
the course of the investigation, and to Catherine O'Regan for
drafting services.

This volume presents the development of the methodology and
results obtained in the application of these methods to some rep-
résentative sample structures.
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SUMMARY

The present report is concerned with the development of
finite-element methods for the treatment of the nonlinear be-
havior of complex structures. Lt represents an extension of a
previous study reported in NASA Contractor's Report CR-803. The
nonlinearity may be of two types, material nonlinearity asso-
ciated with plastic deformation and geometric nonlinearity asso-
ciated with the changing geometry of the structure as it deforms,
or it may involve a combination of the two. Effects due to creep
and other time-dependent material properties are neglected.

The methods developed are applicable to loading conditions
that cause membrane stress states or pure bending, or both in
combination. The Prager-Ziegler kinematic hardening theory of
plasticity is incorporated in the finite element methods to
allow for consideration of the plastic response of structures
subjected to realistic loading conditions, including cyclic load-
ings that cause stress reversals into the plastic range. Ideally
plastic behavior is also included to provide capability for pre-
dicting the collapse load of structures. The plasticity theory
is implemented in the finite element analysis by using an in-
cremental approach in conjunction with the initial strain con-
cept, with plastic strains interpreted as initial strains.

The treatment of geometric nonlinearity requires use of an
incremental technique in which the internal forces and configura-
tion of the structure are continuously updated to account for its
changing geometry.

The methods developed are applied to a number of sample
structures. For membrane stress states alone, the analysis em~
ploys a triangular finite element in which stress and strain vary
linearly. This element is used for the plastic analysis of a
variety of structures characterized by regions of rapid stress
variation and subjected to cyclic loading resulting in reversed
plasticity. Comparisons between the results of the analysis and
experimental data indicate good correlation.

Plastic analyses have also been performed for a variety of
beam and plate structures. These problems make use of refined
rectangular and triangular finite elements. Among the problems
considered are rectangular, circular, and annular plates with

vii



various boundary conditions. Once again, comparisons with re-
sults of other available analyses are favorable.

Problems of combined bending and stretching of plates are
also considered. Results are obtained for rectangular and cir-
cular plates. Results for combined geometric and material non-
linearity are presented for beams and arches.
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1. INTRODUCTION

Redundant structures constructed of ductile materials can,
as is well known, withstand substantial increases in loading, as
compared with similar structures constructed of equal strength,
brittle materials. The ability to determine the reserve strength
of these structures accurately and provide the technology for
predicting their failure loads under a variety of realistic load-
ing conditions has stimulated substantial efforts toward develop-
ing methods for the analysis of structures in the plastic range.

Considerable progress has been made recently in developing
general methods of plastic analysis. This progress is largely
attributable to advances in the field of numerical methods of
structural analysis, specifically, the finite-element method.
The treatment of nonlinearities, both physical and geometric,
within the framework of existing finite element techniques, per-
mits analysis of structures of arbitrary shape and consideration
of a variety of loading and boundary conditions.

References 1 through 20 are representative of recent inves-
tigations concerned with incorporating the effects of plastic be-
havior in finite-element analysis. These studies describe tech-
niques to treat plasticity by means of various algorithms that
linearize the basically nonlinear problem.

This report is an extension of a previous study made under
NASA Contract NAS 1-5040 and reported in Ref. 11. The earlier
study developed discrete-element methods for the plastic analysis
of complex built-up structures in states of biaxial membrane
stress, with particular emphasis on the effect of cyclic loading
causing stress reversals in the plastic range. To accommodate
this case, the methods implemented a plasticity theory that can
take into account the Bauschinger effect. This theory is the
kinematic hardening theory of Prager (Refs. 21 and 22) as modi-
fied by Ziegler (Ref. 23). It can represent the salient features
of the plastic behavior of structural metals, and is readily im-
plemented in a discrete-element analysis.

Although the methods developed in Ref. 11 can treat cyclic
loading and accommodate ideally plastic or strain-hardening mate-
rial behavior, they have substantial limitations, viz.,



# The structural idealizations considered in Ref. 11
were limited to bar elements, in which only axial
stress is present (uniform and linearly varying),
and to thin planar elements that carry only a
uniformly distributed biaxial membrane stress.
Thus strain variation in the middle surface of a
thin planar element or through its thickness as a
result of bending was not treated.

e The effect of geometric nonlinearity was not taken
into account. Thus the change in the structure's
stiffness properties due to the nonlinear strain-
displacement relations and to the changing geome-
try of the deformed structure was neglected.

As a result of the current investigation, these restrictions
have been removed and the methods developed in Ref. 11 have been
extended. Two principal areas are discussed in this report.

First, plastic analysis methods are developed in which a
nonuniform strain distribution is assumed to exist within each
element. Two types of strain variation are considered within the
framework of this assumption. In the first, a linear variation
in the middle surface of a thin planar element is assumed. Using
an element with a linearly varying strain distribution has a two-
fold advantage over the constant strain element: it can provide
a more accurate description of the state of stress in a struc-
ture, particularly in regions of high stress gradient, than the
constant strain element used previously; and it provides a more
easily interpreted description of the state of stress. These
features are desirable since accurate representation of stress
is particularly important in plasticity analyses.

The second type of strain variation considered is that
through the thickness of the element and is intended for applica-
tion to structures with plate or shell components in which bend-
ing effects may be significant. Plastic strains are assumed to
vary linearly from the upper and/or lower surface of the element
to an elastic-plastic boundary located at some point through the
thickness. The finite elements chosen for use in the plastic
bending analysis include a beam element of rectangular cross
section, a 16 degree-of-freedom rectangular plate element, and
an 18 degree-of-freedom triangular bending element.



The second area here discussed is the development of finite
element methods to treat geometrically nonlinear behavior of
elastic and plastic structures. To this end, an incremental pro-
cedure is used that involves linearizing the problem within each
of a series of steps associated with an incrementation of the
applied loading.

Simultaneous treatment of plasticity and geometric nonlin=
earity is accomplished by combining the initial strain concept
with the incremental geometric nonlinear procedure. The result-
ing incremental procedure involves solving a new linear problem
at each step of the loading process, with changing geometry caus-
ing changes in the stiffness-influence coefficient matrices, and
with plasticity accounted for by means of the initial strain-
plastic strain analogy in conjunction with subsidiary constitu-
tive relations from an appropriate plasticity theory.

Application of the methods has been made to a broad spectrum
of sample structures. By this means it is possible to determine
the limits of applicability of the methods and consequently to
single out those deficiencies which might otherwise be undetect-
able in a numerical method of analysis such as the finite element
method.






LIST OF SYMBOLS
length of beam or rectangular plate; radius of
circular plate

width of rectangular plate; inner radius of annular
plate

hardening coefficient
generalized displacement
elastic strain

initial elastic strain
total strain

Young's modulus

yield or loading function
plate thickness

theoretical elastic stress concentration factor
based on nominal net section stress

plastic stress concentration factor based on
nominal net section stress for initial tensile
loading and reversed loading from initial tension,
respectively

length of beam finite element

fully plastic moment

%
yield moment [M - % 05t |

shape parameter used in Ramberg-Osgood stress-
strain relation

components of membrane stress resultants



Ncrit

a, .
1]

€.,
1]
dA

di

elastic buckling stress resultant

applied load intensity

[p = Pl T 9]

area integral
nodal generalized forces
effective plastic load

radial coordinate

nominal net section stress
half-thickness of plate

in-plane displacement components
strain energy

transverse displacement

local coordinates of finite element

depth of elastic-plastic boundary for beams and
plates

ratio of applied membrane stress resultant to
buckling membrane stress resultant

coordinates of center of loading surface

denotes an incremental quantity

plastic strain

nonlinear terms in strain-displacement relations

differential of scalar quantity appearing in flow
rule

differential of scalar quantity appearing in
Ziegler's hardening rule



Matrices:

(A]
[B]

[C]

[E]

[k]
[k]

Poisson's ratio

components of stress

yield stress

parameter in Ramberg-Osgood stress-strain relation
free field stress

triangular area coordinate (see Appendix F)

matrix relating total strains in structure to
applied load

matrix relating stresses in structure to applied
load

matrix relating plastic strain increments to
stress increments in strain-hardening finite
element [Eq.(A.8)]

matrix relating elastic strains to stresses in a
finite element [Eq. (A.19)]

matrix expressing condition of tangency of stress
increment vector to yield or loading surface in an
individual ideally-plastic element [Eq. (A.1l1)]

matrix expressing condition of normality of
plastic strain increment vector to yield or load-
ing surface in an individual ideally-plastic
finite element [Eq. (A.14) ]

matrix defined by Eq. (A.23)
elastic stiffness matrix for a finite element
initial strain stiffness matrix for a finite

element based on an assumed distribution for
increment of initial (plastic) strain



(K]
k]

[R]

[T]

{Aw}

initial strain stiffness matrix for a finite
element based on an assumed distribution for
initial (plastic) strain

initial stress stiffness matrix for a finite
element

matrix relating stress increments to total strain
increments for a strain-hardening material
[defined in Eq. (A.22) ]

matrix relating element strain to nodal gen-
eralized displacements

matrix relating element initial (plastic) strain
increment to initial (plastic) strain increment at
nodes

matrix relating element total plastic strain to
total plastic strain at nodes

orthogonal transformation matrix relating gen-
eralized nodal displacements in the local co-
ordinates axes to the global axes

vector defined in Eq. (A.15)

Matrix Notation:

{}
[ ]

column vector

square or rectangular matrix
diagonal matrix

transpose

inverse

used as a subscript denotes a diagonally parti-
tioned matrix
used as a subscript denotes nodal quantities

used as a superscript denotes ith incremental
load step



2. METHODS OF ANALYSIS

The methods developed here are of the incremental type,
since solutions to problems involving material nonlinearity, when
it is present alone or in combination with geometric nonlin-
earity, are best obtained by solving a sequence of linear prob-
lems associated with an incremental application of the loading.
The formulation of the governing matrix equation is developed
within the framework of the displacement method of finite-element
analysis. As in a linear elastic analysis, assumptions are made
concerning the displacement field within an individual finite
element in terms of discrete quantities at node points. In addi-
tion, assumptions may be made concerning the distribution of
plastic strain (or its increment corresponding to an increment in
loading) within each element. Plasticity is included by intro-
ducing the effects of initial strains into the governing matrix
equation and then interpreting these initial strains as plastic
strains. Stiffness matrices additional to the usual elastic
stiffness matrices for small displacements are introduced to
treat problems of combined nonlinearity involving small strains
and large displacements.

Formulation of General Matrix Equation

As a first step in the analysis, the assumptions concerning
displacements and initial strains are used to derive the force-
displacement relations for an individual finite element. This is
accomplished by application of the principle of virtual work or
through a consistent energy approach. Here we use the latter
and, in accordance with an incremental approach, the equations
are derived from the expression for the increment of strain en-

ergy.

The increment in elastic strain energy AU from an initial
elastic strain state {e®} may be written as

— (e2)+(ne®)

AU = {O}Ifdee} dv 1

{eO} J



where {0} represents the stresses, {Ae€}] is the increment in
elastic strain, and the triple integration is carried out through
the volume V of the element.

Strictly interpreted, Eq. (1) is valid only for linear elas-
tic material behavior. However, by analogy with the equivalence
between temperature gradients and body forces in causing a strain
field in thermoelasticity, plastic strains can similarly be re-
lated to fictitious body forces (Refs. 24 and 25). This permits
application of known analytical techniques of elasticity to the
analysis of bodies subjected to plastic strain.

In the presence of plastic strains, the increm:at of elastic
strain can be written as

{Aee} = {AeT} - {Ae} s (2)

where {AeT} is the increment of total strain and ‘Ae} 1is the
increment of plastic strain. The stresses (o0} are related to
the elastic strain by the linear stress=-strain relation, written
as

{0} = [E] {ee} s (3)

where the elements of the matrix [E] are the usual elastic
coefficients. Similarly, the stresses present in the structure
at the beginning of the load increment are related to the cor-
responding elastic strains as follows,

{00} - [E] {eO} : (%)

The following expression for the increment of strain energy is
obtained by substituting Eq. (3) into Eq. (1), integrating be-
tween the prescribed limits of strain, and then substituting
Egqs. (2) and (4) into the resulting equation.

10



AU = % [ {AeT},[E] {AeT} dv - {AeT}’[E] {Ae} dav
\' Vv
+ % J {AG},[E] {Ae} av + J {c°}’ {AeT} dav (5)

v \'

{Uo}l {Ae} dv

\

It is at this stage that the assumptions concerning the dis-
placement and plastic strain fields must be made. These assump-
tions, although independent of each other, are dependent upon the
class of problem to be considered (i.e., bending or membrane
stress) and serve to define the stiffness properties of the
finite element. Specific assumptions made and results for some
sample structures are discussed in subsequent sections.

Once the assumption concerning the variation of displacement
within the element is made, the total strain distribution can be
expressed in terms of nodal displacements by making use of the
appropriate-strain-displacement relations in conjunction with the
assumed displacement function. These relations can be written in
matrix form as follows,

{AeT} = [W] {Ado} + {AGZ} (6)

where {Adg} 1is the vector of generalized incremental nodal dis-
placements, [W] is a function matrix (that is, a matrix in
which the elements are functions rather than constants) that is
obtained from the linear component of the strain-displacement
relations, and {A62)} symbolically represents the nonlinear con-
tribution to the strain-displacement relations, i.e., squares and
products of increments of rotation. The increments of rotation
{A6} are related to the generalized displacement increments, and
may be represented as

11



{A } = [ﬁ] {Ado} @)

[a¥)
where [W] is a function matrix.

In a plasticity analysis, assumptions may also be made con-
cerning the distribution of the increment of initial strain (or
plastic strain) within each element. These assumptions are made
independently of those concerning the distribution of total
strain, Eq. (6). The assumed distribution of plastic strain in-
crements can be written in terms of their values at nodes, as
follows,

{Ae} = [ﬁp] {Aeo} (8)

where {Aeo} represents the nodal plastic strain increments, and
[Wp] is a function matrix that explicitly depends upon the

assumptions made concerning the distribution of plastic strain
increments.

Substituting Eqs. (6) through (8) into Eq. (5), neglecting
the higher order contributions of displacement increments in each
of the integrals, and neglecting as well all terms that are inde-
pendent of displacement increments, we are led to the following
expression,

AU = % {Ado},[k(o)] {Ado}
- {Ado},[i] {Aeo} (9)
+ % {Ado},[k(l)] {Ado} T

12



where

k@7 - Wi’[E] [W] av
Lbbv
k] = [w1'[E1[ﬁp] av (10)
ULLV
p
k= W1 [®1 (W] av .
A"

The matrix [k(o)] is the conventional elastic stiffness
matrix, obtained from the linear components of the strain-
displacement relations; [k] 1is the initial strain stiffness
matrix and accounts for the effects of the presence of initial
strains; [k(l)] represents the initial stress stiffness matrix
and appears as a result of the nonlinear terms of the strain-
displacement relation. This last matrix can be considered as an
additional component of the element stiffness matrix that ac-
counts for the effect that the presence of stresses has on sub-
sequent deformations. The elements of the matrix [c©0] are
components of the stress state existing at the beginning of the

incremental change in energy. Vp is the volume of the plastic
region in each element.

Application of Castigliano's first theorem to Eq. (9) yields
the following governing incremental linear matrix equation for an
individual finite element,

CICLON NS B ) W41 Jaa ) - w1
Staay = 1%Pf = |V T+ D] g - B e} a

where {Apo} represents the vector of increments in the gen-
eralized nodal forces.

13



This form is convenient to use if the assumptions associated
with the plastic strain distribution are applied to their incre-

mental values. For some types of analysis, such as bending and
combined bending and stretching, it is convenient to use assump-

tions concerning the distribution of total plastic strain rather
than of incremental plastic strain. This requires that Eq. (8)
be replaced by

{e} - W] {eo} (12)

%
where the elements of the matrix [Wp] represent the assumed.
functional representation of the total plastic strains {e} in

terms of their nodal values {e¢y}. At any step of the loading
process, the increment of plastic strain may be written as

{ }i _ }i { }i-l

Aep = L¢ - Je (13)
{ 1 1

where the superscripts i and

i-1 refer to current and pre-
ceding load steps, respectively.

Substituting Eqs. (12) and (13) into the expression for

strain energy, Eq. (5), and applying Castigliano's first theorem
leads to the following equation,

{Apo} - @+ D] {Ado}

(14)
(i [ xdel [ i-l
(07 qeft = 7™ e F7)
where
k'] = [w1'[E1[w:]dv (15)
Vv
P

14



and represents the initial strain stiffness matrix developed on
the basis of assumptions made concerning the distribution of
total plastic strain.

In general, the initial strain stiffness matrices [k],
Eq. (10), and [k*], Eq. (15), may differ substantially. This is
not the case, however, when the assumed distribution of the in-
crement of plastic strain is the same as that for total plastic
strain and when the initial strain stiffness matrix [k*] does
not change with each load increment. The following equivalence
is then wvalid

ket {eo}i - Kt {60}1-1 = K] {Aeo} = [¥] {Aeo} (16)

and Eqs. (11) and (14) can be used interchangeably.

Material Nonlinearity

If we initially neglect the effects of changing geometry and
write the elastic stiffness matrix as

k91 + kM- ) 7)

then Eqs. (11) and (14) may be rewritten as

Iap 1 = g 1 - 1 A 12

YAPO} [k ] 1Ado} (%] 1Aeo} (18)
and

{Apo}i = [k ] {Ado}i - (et {eo}i - it {eo}i“l) .19

It should be noted that the initial stress stiffness matrix

[k(1>] is not necessarily associated only with geometric non-
linearity, but may be required in such other cases as the bending
of plates subjected to membrane stress.

15



Displacement method — predictor procedure. — Equations (18)
and (19) may be put into alternative forms suitable for numerical
solution; associated with each of these forms, there are alterna-
tive procedures for effecting a solution. In the following dis-
cussion, we distinguish between the basic forms employed by using
the terw "method"; we distinguish between the solution procedures
employed by using the term "procedure." Thus we define a "dis-
placement method" and a “"strain method," and associated with each
there is a "predictor procedure" and a "direct substitution pro-
cedure." In the first "method" to be treated, the product of the
initial strain stiffness matrix and the vector of plastic strains
(or their increments) can be considered as an "effective plastic
loading," represented in Eq. (18) as

{Aq}i = [E] SAeo}i (20a)

or in Eq. (19) as

{Aq}i _ jq}i _ {q}i-l _ [k#]i {eo}i ) [k*]i-l {eo}i—l . (20D)

In Eq. (20b) the increment of the effective plastic loading is
determined at any step by taking the difference in the products
of the initial strain stiffness matrix and the vector of total
plastic strains in two consecutive steps. In this way, only
total values of plastic strain are utilized in the governing
linear matrix equation.

The desired form of the equation is obtained by grouping
together the increments of generalized nodal forces and effective
plastic loads, resulting in the following equationm,

[k, ] {Ado}i = {Apo}i + {Aq}i“l . (21)

Here it can be seen that the values of the increments of fic-
titious loads introduced into Eq. (21) are taken to be equal to
those computed in the preceding load increment and are thus known
quantities in this equation. The use of this type of "predictor
procedure" obviates the necessity of introducing the plastic
stress-strain relations explicitly into the governing matrix
equation.

16



Equation (21) is written for each element in the structural
idealization, and then, by an appropriate process of assemblage,
the over=-all linear matrix equation for the entire structure is
formed. This resulting equation is identical in form to that of
Eq. (21) and can be written as

[X_] {AD}i - {AP}i + {Aq}i"l (222)

where capitalization of the symbols in this equation represents
the corresponding assembled or "stacked" matrices. The above
equation may be written in terms of total quantities, rather than
in the incremental form, for the case when the elastic stiffness
matrix [Kg] remains constant, i.e.,

K] {D}i - {P}i + {Q}i-l i (22b)

The incremental solution technique using either of Eqs. (22)
reduces to a sequence of linear problems in which the applied
loading is constantly modified by the effective plastic load
vector. Thus, with the increments of generalized displacement
obtained from Eqs. (22), the linear matrix equation, Eq. (6),
together with Eqs. (A.22) and (A.8), and the constitutive plas-
ticity relations presented in Appendix A are used to obtain the
complete solution for increments of total strain, stress and
plastic strain, respectively, assuming elastic strain-hardening
material behavior. The corresponding relations [replacing
Eqs. (A.22) and (A.8)] for an elastic, ideally-plastic material
are given in Eqs. (A.23), (A.16), and (A.17). After summing all
incremental quantities to determine current values of the perti-
nent variables, new values of the increments of fictitious load
{Aq} are determined for each element in the plastic range, and
the procedure is repeated until the end of the loading process is
reached.

Strain method — predictor procedure. — The predictor pro-
cedure solution technique can also be applied in an alternative
formulation of the problem involving a direct solution for the
increments of total strain. This alternative formulation is ap-
plicable to those problems in which an explicit solution for dis-
placements, or their increments, is not required, and where the

17



initial strain stiffness matrix [k] does not change throughout
the loading range. The governing matrix equation in this formu-
lation is determined by substituting Eq. (17) into Eq. (11),
performing the necessary stacking operation for application to
the entire structure, then solving for displacements, as follows,

{AD} = k17 ({AP} + [X] {Aeo}> (23)

and finally substituting Eq. (23) into the linear portion of the
strain-displacement relations, Eq. (6) (evaluated at nodes or
alternatively at some point within each element and assembled to
apply to the whole structure), yielding the following expression
for the vector of increments of total strain:

{Aeg} = [A] {AP} + (3] {Aeo} (24)
where
-1
[A] = [0, ]IK,]
and

nl —
(3] = W 1K 17V (K] .

If we wish to use a predictor procedure to solve Eq. (24),
we must write this relation in the following form,

{Aez}i = [A] {AP}i + [J] {Aeo}i-1 . (25)

Using values of {Ae_} estimated in this way, we can find
the unknown total strain Increments from Eq. (25), and then find
the increments of stress and plastic strain from Eqs. (A.22) and
(A.8) for strain-hardening behavior, or from Eqs. (A.23), (A.16),
and (A.17), for ideally plastic behavior.

The predictor procedure, involving the use of estimated

values of plastic strain in Eq. (22) or Eq. (25), has computa-
tional advantages since the solution requires only matrix

18



multiplication in each load step once the corresponding effective
plastic load vector is formed, provided the matrix [Kg] is con-
stant and thus need be inverted only once. This differs from the
direct substitution procedure to be discussed below, in which
matrix inversion or simultaneous equation solution is required at
each load step. However, a disadvantage associated with the pre-
dictor procedure solution technique is a propagation of error

as plastic straining proceeds. Hence it may be necessary to use
small load increments for improved accuracy, thereby reducing the
computational advantage of this procedure.

In Refs. 1, 4, 5, and 11 the predictor procedure is also
formulated in terms of a governing matrix equation relating in-
crements of stress to increments of load and plastic strain, as
follows,

{Ado}i - [B] {AP}i + [H] {Aeo}i"l : (26)

This procedure, referred to as a "constant stress" procedure, has
been shown to lead to a characteristic numerical instability
(Refs. 1, 5, and 11). No such instability occurs when the pre-
dictor procedure is used in conjunction with Eq. (22) or Eq. (25).

A detailed discussion of the formulation of the coefficient
matrices of Eqs. (25) and (26) is presented in Appendix B for a
triangular membrane element in which a linear strain variation is
assumed.

Displacement method —— direct substitution procedure. — The
use of Eqs. (22), (25), or (26) is usually associated with the
initial strain method of finite-element plasticity analysis. An
alternative approach, commonly referred to as the tangent modulus
method, involves the direct substitution of the incremental con-
stitutive plasticity relations into the governing matrix equa-
tion, Eq. (18). For an elastic, strain-hardening material,

Eqs. (A.8) and (A.22) may be combined to yield an incremental re-
lation between plastic strains and total strains, as follows,

{Ae} = [c]r]"t {AeT} . (27)
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The strain-displacement relation of Eq. (6) (considering only the
linear component) can be substituted into Eq. (27) to yield the
following relationm,

{Ae} = [c]1R] ‘W] {Ado} ) (28)

Equation (28) must be evaluated at each plastic node of any ele-
ment, and can be written as

f -1 J }
1Aeo} [r; ] ad, (29)
where
[Fj] =0 if node j 1is elastic and
[Fj] = [Cj][Rj]-l[Wj] if node j 1is plastic.

Substituting Eqs. (17) and (29) into Eq. (11) yields the
following incremental load-deflection relation for an individual
element,

—

IAPO} = (k1 - k1) {Ado} (30)

where
[kp] = [kI[T],

and the matrix [I'] represents the assembled nodal [Ij]
matrices for the element.

For an elastic, ideally-plastic material the incremental re-
lation between plastic strains and total strains is obtained by
substituting Eq. (A.23) into Eq. (A.1l7) to yield the following
equation,
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{Ae} - [E1E*L {AeT} . (31)

The corresponding incremental plastic strain=-displacement rela-
tion, obtained by substituting the strain-displacement relation
[the linear portion of Eq. (6)], into Eq. (31), may be written as

{Ae} = BlE 1 W) {Ado} . (32)

The nodal plastic strain increments can again be written in terms
of displacement increments, as in Eq. (29), where now

[Pj] = 0 if node j 1is elastic, and

il

~ & e
[Fj] [E][E ] 1[Wj} if node j 1is plastic.

The matrix f[k,] in Eq. (30) may be looked upon as a "plas-
tic stiffness matrix" since it explicitly contains the effect of
plasticity and enters into the analysis as an additional compo-
nent of the total stiffness matrix. Further, since the elements
of [kp] are functions of the instantaneous stress state, they

must be evaluated at each incremental step.

Equation (30) represents a form that is associated with the
displacement method used in conjunction with the "direct substi-
tution" or tangent modulus procedure. An alternative formulation
of this method and procedure that avoids any explicit assumption
as to the distribution of plastic strains is obtained by reform-
ing Eq. (11) without making use of Eq. (8), and excluding con-
sideration of [k{1)], to yield the following relation,

av . (33)

W1 E10] fad } - w761 foe]

o

\Y

For an elastic, strain-hardening material, the incremental
plastic strain-nodal displacement relation of Eq. (28) may be
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substituted into Eq. (33), which results in the following incre-
mental load-displacement relation,

{Apo} = [k {Ado} (34)

where, after some manipulation, we find that

el = ||| 1 I wlav (35)
Vv

. -1,
It should be noted from Eq. (A.22) of Appendix A that [R] is
the matrix relating increments of stress to increments of total
strain in an elastic, strain-hardening material.

Similarly, for an elastic, ideally=-plastic material the
matrix relating load increments to increments of displacement is
given as

[kp] = (w1’ (E1E" 1t wav (36)

\

= el . .
where the product [E][E ] is used to relate increments of
stress to increments of total strain for an elastic, ideally-
plastic material. ~

Although Eqs. (30) and (34) both relate increments of load

to increments of displacement, in general, with the exception of
uniform stress elements,

[kyl # (k1 - [k)] . 37)

The matrix [ky] represents a reduced or tangent modulus stiff-

ness matrix. The effect of plasticity is explicitly contained
in it through the matrix [R]"l (or [E]J[E*]"l), obtained from
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the constitutive relations corresponding to the plasticity theory
used. This matrix represents the new material stiffness prop~
erties and replaces the elastic material coefficient matrix [E]
in the expression for [kgl.

Since the elements of [R]"l (or [E][E*]“l) are nonlinear
functions of stress, the expression for [kr] is not readily in-
tegrable for finite elements other than those that involve the
assumption of a uniform stress field. Consequently, the elements
of [kT] are determined on the basis of values of stress at some

point within the element, usually taken at the centroid.

Strain method — direct substitution procedure. — The
.direct substitution procedure may also be applied to the matrix
equation represented in Eq. (24). For an elastic, strain-
hardening material, the incremental plastic strain-total strain
relation given in Eq. (27) is substituted into Eq. (24) to yield
the following relation

Y] {Aeg} = [A] JAP} (38)

where
[v] = 1 - L3llc IR,]™

and the subscript d denotes a diagonally partitioned matrix.
Similarly, for an elastic, ideally-plastic material,

Eq. (24) is written in a form identical to that of Eq. (38),
where now

~ % =1
(¥l =01d - [JIELZIEL] T .

An equation similar in form to Eq. (38), relating stress in-
crements directly to applied loads, was developed in Ref. 11.
For strain-hardening behavior this equation takes the form:

(2] {Ao} - [B] {AP} (39)
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where
[z] = 1 - [H]lC,]

The method of solution using this equation is called the "stress
method." Based upon the direct substitution procedure, it does
not exhibit the characteristic numerical instability associated
with the predictor type of solution procedure presented in

Eq. (26). The strain and stress methods are equivalent when used
in conjunction with the direct substitution procedure.

Summary of Methods for Plastic Analysis

Starting with an expression for the increment of strain en-
ergy, several alternative governing equations have been presented.
Three of these equations, namely, Eqs. (21), (30), and (34), are
written in terms of increments of displacement. Although these
equations are interrelated, a basic distinction associated with
their formulation does exist. In the case of Eqs. (21) and (30),
an assumption is made concerning the distribution of the initial
strains (or their increments), while in the case of Eq. (34) no
such assumption is required; however, in the latter case the ex-
pression for the tangent modulus stiffness matrix, as given in
Egqs. (35) or (36), must be integrated.

A further distinction among the various formulations is
associated with the solution procedures used, which may be named
the predictor and the direct substitution procedures. In the
former, estimated values of plastic strain are used in the gov-
erning linear matrix equation. Thus plastic effects are treated
in the linear matrix equation by a modification that is external
to the stiffness influence coefficient matrix. In the direct
substitution procedure, plasticity is accounted for by means of
an "internal" modification of the stiffness matrix.

In the strain (or stress) method, represented by Egs. (25)
and (38) [or Egs. (26) and (39) ], the sole distinction among

these equations is that associated with the solution procedure
used.

The direct substitution or internal modification procedure,

while it retains the errors associated with stepwise lineariza-
tion, eliminates the propagation of error associated with the
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predictor or external modification procedure. This improvement
in accuracy for a given magnitude of the load increment is, how-
ever, accompanied by an increase in the number of numerical
operations required to obtain a solution. These operations can
be computationally expensive, since the elements of the influence
coefficient matrices, [kp] of Eq. (30), [krl of Eq. (34), or
[Y] of Eq. (38), must be recomputed at each incremental step of
loading. The effect of this can be mitigated by increasing the
magnitude of the load increment, but at the cost of greater in-
accuracy. A choice between the two basic procedures thus in-
volves a trade off between smaller load increment but less compu-
tation per increment, in the case of the predictor procedure, and
larger load increment but more computation per increment, in the
case of the direct substitution procedure. This choice will not
be obvious in any given problem.

An approach that combines the two procedures might prove to
be the most effective. For example, the predictor procedure may
be sufficiently accurate in those regions of a structure where
plastic flow has begun but has not yet been substantially de-
veloped. In those regions where plastic effects are predominant,
the direct substitution procedure could be used. This hybrid
procedure is most easily implemented by using the governing
matrix equation in terms of total strain increments (or stress
increments), i.e., Eqs. (25) and (38) [or Egqs. (26) and 39)]. In
Refs. 9 and 11 this procedure is developed and applied to a num-
ber of sample structures.

25






3. MATERIAL NONLINEARITY ~-- MEMBRANE STRESS BEHAVIOR

The methods discussed in the preceding section have been ap-
plied to numercus structures subjected to a variety of loading
and boundary conditions. The sample structures were chosen sc as
to be consistent with the goals of the present study. For the
case of structures subjected to membrane stress alone, these
goals included an evaluation of the use of a triangular element
in which total strain and plastic strain are assumed to vary
linearly, and the further evaluation (supplementing the investi-
gation of Refs. 9 and 11) of the use of the Prager-Ziegler kine-
matic hardening theory of plasticity in predicting the essential
features of cyclic loading with stress reversals into the plastlc
range. For the most part, the sample structures were chosen from
among those that were the subject of an independent experimental
study conducted at NASA Langley Research Center (see Refs. 26-28)
the purpose of which was to investigate the plastic behavior of
membrane stressed specimens subjected to cyclic loading condi-
tions. Results from the experiments on these structures, which
exhibited regions of high stress gradients, provided a stringent
test of the accuracy of the finite element, and provided some
additional information for the further evaluation of the Prager-
Ziegler kinematic hardening theory.

The methods of plastic analysis described in the preceding
section have been applied by a number of authors to structures
subjected to membrane stress states (Refs. 8, 9, 11, 19, and 20).
For the most part, our results for membrane stress behavior were
obtained by using the strain (or stress) method in conjunction
with the direct substitution procedure, Eq. (38) [or Eq. (39)].

Before discussing the sclutions obtained, a few comments are
in order on the assumptions made in the development of particular
finite elements used in modeling the entire structure. In de-~
veloping the governing equations in the form of Egs. (38) or (39),
besides making a displacement assumption, an explicit assumption
must be made concerning the distribution of plastic strain (or
increments of plastic strain) within each element. Making such
an assumption, as opposed to defining the constitutive relations
at a single representative point in the element [Eq. (34)], is a
concept fundamental to these methods and forms the basis of our
analysis. Since much of the previous work in developing methods
of membrane stress analysis has involved the use of uniform
strain elements, with the associated uniform distribution of
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plastic strain implied, this distinction has not often been ex-
plicitly stated. It becomes clear, however, when we make use of
a higher order element, the effectiveness of which assumes
greater importance in a plastic than in an elastic analysis.
Whereas a given level of error in the description of the stress
field may be acceptable in an elastic analysis, the same level of
error may not be acceptable in a plastic one, since the latter is
especially sensitive to the accuracy with which the stress is
predicted.

To demonstrate the use of a higher order element, calcula-
tions were performed using a 6-node, 12 degree-of-freedom tri-
angular element based on the following quadratic function repre-
sentation for in-plane displacement

= 2 2
u = ay + 0yX + o3y + a,xy + OcX + G Y

(40)

x2 4+

xy + qll

2
v = ay + agyx + Qgy + a 127 -

8 10

Use of this element, shown in Fig. 1, satisfies the above cri-
terion of providing an accurate description of the state of
.8tress in a structure, particularly in regions of high stress
gradient. Although, for the purpose of demonstrating the plastic
analysis, we will use this element here, other accurate high
order elements can similarly be used.

The further assumption is made that the plastic strain (or
strain increments) varies linearly in the plane of the triangular
element, and can be written as

Xy Xy
Ae = Aei (l - f"’ - L + zk——} + Ae, ('g""xk >+ Aek<l> (41)
3 Yk jyk J Xj jyk Yk

where 1, j, k represent the vertex nodes of the triangle. This
assumed distribution is illustrated in Fig. 2 where it can be
seen that the linear distribution is assumed to apply between
vertices of the triangle and over the entire area of the element.
Thus, if only one of the vertices of the triangle is in the plas~
tic range, the value of the plastic strain (or strain increment)
decreases linearly to zero at the other two vertices. This
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eliminates the necessity of locating an elastic-plastic boundary
in the interior of the element, and enables one to describe the
distribution of plastic strain increments in any element once the
nodal values are known. This represents a distinct practical ad-
vantage over the alternative approach of assuming a plastic

strain distribution that provides for the existence of an elastic-
plastic boundary at some intermediate position in the element,
although the latter approach constitutes a refinement that should
provide greater accuracy.

The linear function of Eq. (41) is used to describe all
three components of plastic strain present in a plane stress
analysis. When the function is written for each of these com-
ponents, we obtain the linear function matrix [W,] of Eq. (8)
that relates plastic strain increments in the element to strain
quantities at the vertices. This relation can be written as

=[] {Aeo} 42)

xyi 5

1ae .
‘ Xyl

A xyk

where [ﬁp] is a diagonally partitioned matrix whose submatrices
are composed of the functions shown in Eg. (41).

With the above assumptions for plastic strain distribution

and displacement, the element stiffness matrix and initial strain
stiffness matrix may be explicitly determined. The stiffness
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matrix [k] for this linear strain element is given in Refs. 29
and 30, and the initial strain stiffness matrix [k] is given
in Appendix C.

Results

The six-node linear-strain triangle (LST) was used to gen-
erate the [A] and [J] matrices of Eq. (25) [or alternatively
the [B] and [H] matrices of Eq. (26)]. This element was then
used in conjunction with the strain (or stress) method-direct
substitution procedure described in Section 2 to perform a cyclic
plastic analysis of four sample structures under cyclic loading.
These are:

1) A uniformly loaded rectangular notched bar
with a theoretical stress concentration
factor of Ky = 2 (based on an approxima-
tion due to Neuber, Ref. 31).

2) A uniformly loaded rectangular notched bar
with a theoretical stress concentration
factor of Kp = 4,

3) A uniformly loaded rectangular sheet with
a centrally located circular hole.

4) A thin annular disk subjected to a uniform
internal pressure.

The first three of these structures were the subject of experi-
mental studies conducted at NASA Langley Research Center by
John Crews (Ref. 26). The data obtained from these studies are
compared here with the analytical results obtained from the cur-
rent investigation.

The Prager-Ziegler kinematic hardening theory was employed
in each of the cases studied. The use of this theory requires
the specification of a parameter, c¢, which appears in Eq. (A.5).
This parameter characterizes the hardening behavior of the mate-
rial and, in the case of uniaxial stress, can be interpreted as
the instantaneocus slope of the stress versus plastic strain
curve.
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In the present application of the kinematic hardening
theory, a heuristic approach is used to obtain the multiaxial
hardening coefficient, one that was previously used in Ref. 11.
In this procedure, each stress component is treated as though it
alone were present, and a corresponding value for c¢ 1is deter-
mined on the basis of a uniaxial stress-strain curve from a ten-
sile test or of a stress=strain curve for pure shear. These
curves can be described by the Ramberg-0Osgood parameters [cf.

Eq. (A.24), Appendix A]. A single value of ¢ for the multi-
axial case is then computed as a weighted average of the indi-
vidual components. This procedure has proved adequate for the
class of problems represented by the notched bars and rectangular
sheet with a circular hole here considered. However, it is not
generally applicable, and its use must be reevaluated for each
structure encountered. One of its most serious shortcomings is
the lack of invariance with respect to a rotation of the coordi-
nate axes. This shortcoming is minimized for the structures con-
sidered since the stress component in the direction of the ap-
plied loading predominates throughout the structure. Further
study of this problem, including the generation of additional ex-
perimental data, particularly with respect to cyclic loadings, is
required to place the determination of the hardening coefficient
on a sounder basis.

Notched bar, Ky = 2. — The first structure treated is the

uniformly loaded notched bar, shown in Fig. 3. In Ref. 11, a
plastic analysis for cyclic loading was performed for this struc-
ture on the basis of a finite-element idealization consisting of
constant-strain triangles. 1In the present study this analysis
was repeated, using the linear-strain triangles (LST). The
finite-element idealization of the upper right quadrant of the
notched bar, shown in Fig. 4, is identical to that used in

Ref. 11. Although the LST element can adequately represent the
structure's behavior with a coarser network of triangles, this
idealization was used here to provide a more accurate representa-
tion of the growth of regions of plasticity in the vicinity of
the notch root. The resulting stress concentration factor, based
on nomindal net section stress, obtained from the current analysis
is 2.08 and represents a slight improvement (= 3%) over the
result previously obtained by using constant-strain triangular
(CST) elements. This result compares more closely with the
value, 2.11, obtained experimentally in Ref. 26. It should be
noted, however, that the magnitude of the computational effort to
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arrive at this result was substantially increased by using the
LST element. This is a consequence of introducing midside nodes
in the development of the triangular element. These nodes are at
most coincident with only a single adjacent element, as compared
with the unlimited number of elements that can be coincident at
vertex nodes. The number of degrees of freedom, and therefore
the size of the matrix to be inverted to obtain the [B] and

[H] matrices (see Appendix B), consequently increase manyfold.
For example, use of the LST element leads to 542 unknowns, while
constant~strain triangles for the same idealization require only
144 unknowns. The advantage of the LST element for this problem,
which does not exhibit a very high stress concentration factor,
is therefore minimal. However, for rather steep stress gradients,
as represented by the second notched bar considered, the advan-
tage of this element becomes more substantial.

As indicated in Fig. 3, the material used in the notched bar
is 2024-T3 aluminum alloy. Stress-strain curves for this mate-
rial for initial tensile loading differ greatly from those ob-
tained for initial compressive loading. This type of material
behavior poses some difficulties in the present analysis, since
the Von Mises yield condition assumes an initially isotropic
material, in which the yield stresses in the normal directions
are not only equal to one another but are initially equal in ten-
sion and compression. Consequently, in order to compare present
results with the experimental results of Ref. 26, the initial
yield surface as defined by the Von Mises yield condition was re-
placed by a surface of similar shape but with the center dis-
placed appropriately with respect to the origin of stress space
(cE. Ref. 11, p. 134). Correspondingly, the hardening proper-
ties in tension and compression were treated as different. In
addition, the hardening properties in subsequent cycles of load-
ing differ from those in the first cycle, which was taken into
account in an approximate manner on the basis of limited test
data (Ref. 26). These properties are defined by Ramberg-Osgood
parameters associated with Eq. (A.24) with E equal to
1 x 107 1b/in.2 throughout, as follows:

Initial Tension

0.53 x 10° 1b/in.2

Q
il

0.7

37

o
1l
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Initial Compression

o 0.45 x 10° 1b/in.>

007
n = 8.1

Subsequent Tension

0.7 = 0.53 x 10° 1b/in.?
n = 7.5

Subsequent Compression
0.7 = 0.49 x 10° 1b/in.?
n = 8.1 .

These parameters were also used for the other notched bar and the
sheet with a circular hole.

Local stress versus strain histories at the notch root, com-
puted for a single cycle of loading for each of several load
ranges, are presented in Fig. 5 and compared with the experi-
mental data of Ref. 26. The amplitude of load is denoted by
Smax, Where S is the nominal net section stress across the
notch root. The figure indicates good agreement for both stress
and strain during the first half cycle of tensile loading and an
overprediction of strain at the maximum compressive loading. The
loci of the computed half-cycle and full-cycle residual stresses,
as influenced by the nominal stress amplitude, are shown as
dashed lines in the figure. Comparison with experiment is favor-
able, with the maximum differences occurring for the higher maxi-
mun loading during the first half cycle.

Figure 6 shows load versus local strain at the notch root

for three cycles of load and a maximum loading range represented
by Spax ©of £50 ksi. Good correlation is indicated during the
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first half cycle of tensile load and for the first half cycle of
residual strain. However, there is an overprediction of strain
at the minimum load (Spij, = - 50 ksi) in each cycle, which can

be attributed in part to: 1) the use of larger elements. in the
interior of the structure at some distance from the notch root,
and 2) the possibly poor representation of the second and third
cycle stress=-strain behavior.

The variation of the plastic stress-concentration factor
with the nominal stress range AS is shown in Fig. 7. A com~
parison of results obtained from experiment, in conjunction with
an empirical equation, Ref. 26, and results of the present analy-
sis is shown for monotonically increasing tensile loads, where

the factor is denoted by Kp. For reversed loading from tension

in the first cycle, the factor is denoted by Ké. As indicated,

the correlation of results is quite good, with a maximum under-
prediction of stress concentration factor occurring at the maxi-
mum tensile load, S = 50 ksi.

The contours of the longitudinal stress oy are shown in

Fig. 8 at various stages of the first cycle of loading. Fig-

ure 8a shows the contours at the maximum elastic load. The
close spacing of the contours in the vicinity of the notch root
marks the region of rapid stress variation in the area of highest
stress concentration. At the maximum load, Spgx = 50 ksi,

there is a redistribution of stress due to plastic flow, so that
the region of rapid stress variation is shifted along the notch
boundary, as shown in Fig. 8b. Although the region -of maximum
stress is larger, it is, however, still located in the vicinity
of the notch root. Figure 8c shows the first half-cycle re-
sidual stresses. As is to be expected, the maximum residual
stresses are localized in the area of the notch root. Figures 8d
and 8e denote the stress contours at the minimum load and the
full-cycle residual stresses. These figures maintain the general
trend indicated in Figs. 8b and 8c.

The propagation of the elastic-plastic boundary is shown in
Fig. 9 for a full cycle of loading to Spygx = 50 ksi. It is of
interest here that the region of plasticity is localized in the
vicinity of the notch root during initial tensile loading but
encompasses a much wider area during reversed loading. The
boundary for S = 0 in Fig. 9b represents the elastic-plastic
boundary after the initial tensile loading is removed. Thus the
residual stresses are of sufficient magnitude to cause reversed
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plastic flow to occur during unloading. In addition, this more
pronounced growth of the plastic zone in reversed loading can be
attributed to a Bauschinger effect and to the fact that the mate-
rial of the notched bar exhibits a lower yield stress in compres-
sion than in initial tensile loading.

Notched bar II, Ky = 4., — In the second notched bar struc-

ture (shown in Fig. 10) the notch root has a radius of 0.3 in.
compared with a total bar length of 35 in., so that the notch
is fairly sharp. Again the material is 2024-T3 aluminum alloy.

& quadrant of the finite-element idealization of the structure is
shown in Fig. 11. The enlarged region of this figure, represent-
ing the area near the notch root, indicates the fine network of
triangles necessary in the high stress gradient region. The
stress concentration factor based on net section stress obtained
by using this idealization is 4.49, which is in exact agreement
with the experimental result of Ref. 27. An elastic analysis
using constant strain triangles was also performed, as a means of
evaluating the LST element for a structure exhibiting a steep
stress gradient. In order to compare results on the basis of the
same number of degrees of freedom, the analysis using the con-
stant-strain triangle is based on the idealization in Fig. 11,
with every triangle replaced by four constant-strain elements.
The resulting idealization contains 576 elements and has 620 de-
grees of freedom. Figure 12 shows the distribution of the longi-
tudinal stress along the notch net section obtained by using both
elements. Agreement is good at points well removed from the
notch, but the LST triangle yields a steeper stress gradient than
the CST element and a 6 percent higher peak stress at the notch
boundary. It should be noted that the peak stress shown for the
CST element is the stress in the element adjacent to the notch
root, whereas the peak stress for the LST element is the nodal
stress at the notch boundary. A plastic analysis was performed
for cyclic loadings represented by an average net section stress
of £25 ksi. The Ramberg-0Osgood parameters used to describe the
hardening coefficient in this analysis are the same as those used
for notched bar I. The local stress versus strain history at
the notch root for a single cycle of loading is shown in Fig. 13
and compared with experimental data of Ref. 27. Although the
general shape of the curve in Fig. 13, as compared with experi-
ment, is maintained, the stresses in the first half cycle of load
and the minimum strain after reversed lcading are overestimated.
Figure 14 shows the three-cycle load versus strain curve at the
notch root for the loading range of *25 ksi. Good correlation
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with experimental data was obtained during the first half cycle
of load and for the first half-cycle residual strain. As in the
case of notched bar I, an overprediction of strain is in evi-
dence during reversed loading and in subsequent cycles of lcading.

The stress concentration factors Kp and Ké are shown in
Fig. 15. Good correlation is indicated with the few available
experimental points.

Figure 16 shows the distribution of the normalized longi-
tudinal stress along the horizontal axis of symmetry for three
values of initial tensile loading. The localized effect of plas-
ticity is evidenced by the redistribution of stress in the vicin-
ity of the notch boundary. Since this stress distribution must
be in static equilibrium with the applied load, the validity of
the distribution shown in the figure was checked by measuring the
area under the curves and comparing it with the applied load. In
each case, equilibrium was exactly satisfied.

The growth of the plastic zone for one cycle of load is
shown in Fig. 17. Again, due to the material behavior and the
prediction of a Bauschinger effect, we see that the region of
plasticity is larger during reversed loading from tension than in
the initial loading. Due to the rapid variation of stress, the
notch affects only a localized region near the root.

Rectangular sheet with circular hole. — The uniformly
loaded rectangular sheet with central hole is shown in Fig. 18.
As seen from the figure it has the same over-all dimensions as
the first two structures and is made of the same material. The
idealization used for this structure, shown in Fig. 19, is iden-
tical to the one used for notch II, except for the enlarged re-
gion shown in the figure.

The distribution of longitudinal stress normalized with re-
spect to the applied stress is shown in Fig. 20. The solid curve
denotes the elastic stress distribution at initial yield and com-
pares well with the analysis of Howland, Ref. 32. The other two
curves show the stress distribution at an intermediate and maxi-
mum tensile load. Static equilibrium was checked on the basis of
these curves and was found to be satisfied.

Representations of the distribution of stress near the hole
can be seen in the next two figures. Figure 21 shows the dis-
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tribution of effective stress, <ox + oy cyok + 3Txy> , at

initial yield. As is well known, the rapid variation of stress
occurs in the vicinity of the hole boundary on the axis of symme-
try perpendicular to the load. This is evidenced by the close
spacing of contours in this region. Figure 22 shows the change
in stress contours at successive stages in the first full cycle
of loading. The upper left quadrant shows the contours at the
maximum applied load of 33.4 ksi. The effect of plasticity is
evidenced here by the shift of the region of rapid stress varia-
tion along the hole boundary and by the wide spacing between the
contours of effective stress in the region away from the hole.

The upper right quadrant shows the residual effective stress
after the tensile load is removed. Closely spaced contours near
the hole boundary indicate a rapid decay of residual stress with
distance from the hole. The lower quadrants show the contours at
the minimum load and the full-cycle residual effective stresses.
The patterns are similar to that shown for initial tension.

The propagation of the elastic-plastic boundary is shown in
Fig. 23 for an initial tensile loading and for reversed loading.
As seen in the two prior example structures, the different yield
stress in tension and compression in concert with the predicted
Bauschinger effect causes a substantially larger plastic region
to form during reversed loading.

The next series of figures shows the longitudinal strain
versus net section stress during cyclic loading. Results at the
hole boundary are shown for three full cycles of load and at
points in the interior for one full cycle. Results from an ex-
perimental study of the cyclic behavior of this structure per-
formed at the NASA Langley Research Center by J. Crews, Ref. 28,
are also shown. The experimental points in the interior were
chosen to coincide with node points of the idealized structure.
Figure 24a shows results at the hole boundary. Good correlation
is obtained with the experimental data, especially during initial
loading and subsequent unloading. However, as in the case of the
notched bars, an overprediction of strain is evidenced in the re-
versed load part of the cycle and in subsequent cycles. Fig=
ures 24b-f show the results at the interior points, which are
identified by their coordinates. Here correlation with the ex-
perimental data is good.

Figures 25 and 26 show the distribution of longitudinal
strain along the horizontal axis of symmetry for various levels
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of initial tensile locad and reversed loading. Correlation with
experiment is quite good.

The last figure for this structure (Fig. 27) shows the
stress concentration factor during initial tensile loading. Com-
parison is made with experimental points given by Griffith,

Ref. 33, obtained by using a structure of similar dimensions and
stress~strain behavior. Correlation with experiment is again
seen to be excellent.

Thin annular disk. -— The annular disk and a quadrant of its
finite~element idealization are shown in Fig. 28. The genesis of
this problem is in the determination of the residual stresses and
strains around a hole in a large sheet into which a rivet has
been squeezed. Since this problem exhibits symmetry with respect
to the circumferential coordinate, it is imperative that a harden-
ing coefficient ¢ that is invariant with respect to coordinate
rotation be used in the plasticity analysis. Consequently, a
method alternative to that presented in Ref. 11 is used for this
problem. It is based on effective stress, as discussed in Appen-
dix A, The material for this structure is 2024-T351 aluminum
alloy, with the Ramberg-Osgood material parameters given as
E =107, og,7 = 47.5 ksi, and n = 11.

Figure 29 shows the redistribution of circumferential stress
at the hole boundary with increasing load level. In this case,
the only stress that can change at this point, due to plasticity
effects, is the circumferential stress, since equilibrium con-
siderations require that the radial stress be equal to the ap-
plied internal pressure. Consequently, at the highest load con-
sidered, the circumferential stress is seen to be negative.
Unloading from various load levels is also shown. Of interest
here is the discrepancy between residual stress obtained from the
analysis and the results obtained by assuming completely elastic
unloading (shown by the dashed lines). It can be seen that there
is reversed plastic yielding during unloading and that the pre-
dicted residual stresses have about the same value for unloading
from all tensile loads considered.

The radial distribution of circumferential and residual cir-
cumferential stresses is shown in Figs. 30 and 31 for a few
values of loading. Plasticity effects are evidenced by the
marked decrease in stress with increase in load, a decrease asso-
ciated with the propagation of the plastic region intc the
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interior. Of interest in Fig. 31 is the fact that the residual
stresses, which are compressive near the hole, become increas-
ingly tensile in the interior and near the outer boundary with
increasing load. A redistribution of this kind must occur for
the circumferential residual stresses to be in static equi-
librium.

A solution to the complete problem involving the interaction
of the plate and the squeeze rivet is presented in Ref. 34.

39






4, MATERIAL NONLINEARITY — BENDING AND COMBINED BENDING
AND MEMBRANE BEHAVIOR

The plastic analysis of structures with plate or shell com-
ponents in which bending effects may be significant has been the
subject of many investigations (Refs. 10, 12-15, and 35-39).
With few exceptions, these investigations have been concerned
with determining only the "collapse load" of these structures by
means of two fundamental theorems of limit analysis. These theo-
rems were proved for elastic, ideally-plastic bodies by Drucker,
Prager, and Greenberg (Ref. 40), and are associated with a defi-
nition of the collapse load as that value of load at which a
structure undergoes arbitrary plastic deformations and is no
longer serviceable.

Approximate solutions for the collapse load are based mainly
on the kinematic approach, which permits the estimation of an
upper bound on the load-~carrying capacity of the structure. In
this approach, a displacement pattern associated with a failure
mechanism of the plate is assumed. The work done by the external
loads in this displacement is equated to the energy dissipation
within the plate, and a corresponding collapse load is determined.
The assumed collapse mechanism is subject to various conditions
and is chosen on a trial basis in such a way as to seek a minimum
for the upper bound values obtained for the collapse.

Limit analysis techniques have been applied extensively to
determine the load-carrying capacities of a variety of plates on
the basis of various yield conditions. Although these techniques
provide valuable information concerning the collapse patterns and
collapse loadings of various structures, a complete solution that
can trace the load-deflection history in the plastic range is
frequently desirable and necessary. For instance, the structure
may become unusable because of the development of excessive de-
formation before the theoretical collapse load is reached.

Several authors have considered problems of plastic bending
in which the entire load-deformation history is desired. The
structures considered include beams (Refs. 15 and 36), plates
(Refs. 12, 13, 15, 35, and 37-39), and shells (Ref. 10). Soclu-
tion techniques range from an exact solution of the governing
differential equation (Ref. 36) and a finite difference approach
(Ref. 38), to a finite~element technique (Refs. 10, 12, 13, and
15).
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In several of these previous investigations (Refs. 37-39),
it was assumed that at any point on the plate the entire thick-
ness is either fully elastic or fully plastic. This assumption
greatly facilitates the solution of the problem and is prac-
tically fulfilled in the case of a plate of sandwich construction
in which the core does not possess any bending stiffness. For a
solid plate, however, this simplifying assumption requires that
the curve expressing the relationship between bending moment and
curvature be approximated by two straight lines corresponding to
the fully elastic and fully plastic states. For many structural
materials this idealized moment-curvature relationship represents
a very crude approximation of the actual one, and is therefore
unrealistic. Another approximation that has been used involves
the replacement of the actual plate by a layered model in which
individual layers are either fully elastic or fully plastic.

The plastic bending analysis discussed here (Ref. 15) makes
use of the linear matrix equation, Eq. (22), constituting the
displacement method in conjunction with the predictor procedure.
This governing matrix equation relates the applied loading to the
nodal displacements and initial strains. The use of the initial
strain concept in this analysis requires the development of ap-
propriate matrix relations based on assumptions concerning the
distribution of both displacement and initial (plastic) strain
within a finite element.

For the case of membrane stress states, as has been seen,
the plastic strains are assumed to vary in a prescribed manner in
the plane of the element. For out-of-plane bending, an assump-
tion must be made concerning the distribution of plastic strain
through the thickness as well as in the middle surface of the
element. Specifically, the present analysis assumes the plastic
strains to vary linearly along the edges of a finite element be=-
tween adjacent nodes, and in addition assumes a linear variation
of plastic strains from the upper or lower surface of the element
to an elastic-plastic boundary (or boundaries) located within the
cross section of the element. These assumptions require the de-
termination of the position of an elastic-plastic boundary in
each element on the basis of assumptions concerning its shape.
Thus the analysis here presented utilizes the concept of a finite
element in which there is a progressive development of a plastic
region, instead of the layered approach or a sandwich idealiza-
tion of the actual solid plate. To provide a better understand-
ing of the implementation of these assumptions, their application
to three bending elements will be discussed in detail.
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Beam Element of Rectangular Cross Section

A typical beam element, for which pure bending has been as-
sumed, is shown in Fig. 32. The function for the displacement in
the =z-direction is assumed to be of cubic order in the coordi-
nate x, and is written in terms of the generalized nodal dis~-
placements as

2 3 2 3
wix) = (1 -3 ii + 2 jg)wi + (3 ii -2 ig)wj
2 3 3 2 “3)
+ (X -2 %T + ii)w’xi + (ii B %?>W’Xj :

In choosing a displacement function, it is important to include
all fundamental strained states and all rigid body terms. Equa-
tion (43) satisfies these requirements for a beam element, and in
the case of a uniform bending stiffness, EI, allows for a con-
stant shear load and linearly varying moment along the length of
the element. The plastic strain distribution is assumed to vary
linearly in the =x-direction from its value at the upper (or
lower) surface at node i, represented in Fig. 32 as ¢pj, to
its value at the upper (or lower) surface at node j, repre-
sented as €0 This assumed distribution is written as

e = (&= E>{€Oi (-3 + €03 (%)} (44)

t -z

——

where 2z represents the depth of the elastic-plastic boundary.
A linear function for the plastic strain distribution was chosen
because it represents the simplest form that can, by using suc-
cessively finer idealizations of the structure, approximate the
more complex actual distribution. In addition, as seen from

Eq. (44), it is assumed that at a node the plastic strain varies
linearly from its value at the upper or lower surface to zero at
an elastic-plastic boundary located within the cross section.

The depth of the elastic-plastic boundaries, which propagate
from the upper and lower surface, is measured from the neutral
axis for pure bending, as shown in Fig. 32. In general, the
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depth of these boundaries cannot be directly related to the load.
Hence the value of Zz must be determined from the total strain
distribution,; which is assumed to vary linearly through the
thickness in accordance with Kirchoff's hypothesis. The func~-
tional form describing the shape of the elastic~plastic boundary
is assumed to be a linear function of the coordinate x and may
be written as

z = (z, - z,)

;7 (3‘~> +z, , (45)

£

oot -

where z; and zj represent the depth of the elastic~plastic

boundary at nodes 1 and j, respectively. The choice of a
linear function to describe the shape of the elastic-plastic
boundary is made on the same basis as the choice of a linear dis-
tribution for plastic strain; i.e., the linear function repre-
sents the simplest form that can approximate the more complex
actual shape with successively finer idealizations of the struc~-
ture. On the basis of the preceding assumptions, the elastic~-
plastic boundary consists of a surface in the interior of the
element that extends over the entire area of the element and in-
tersects the edges along straight lines joining nodes, as illus-
trated in Fig. 32. In addition, these assumptions eliminate the
necessity of determining an elastic-plastic boundary on the faces
of the element between nodes, but still require locating such a
boundary through the thickness.

The present assumptions have been further extended to in-
clude the effects of bending in combination with a membrane
stress state. As seen in Fig. 33, this extension necessitates
the separate determination of the positions of the two elastic~
plastic boundaries relative to both the upper and lower surface.
The functional representation of the plastic strain distribution
and the representation of the elastic-plastic boundary are taken
to be similar to Eqs. (44) and (45), but now written separately
for the upper and lower surfaces. A second matrix, in addition
to the usual stiffness matrix, termed the initial stress stiff-
ness matrix (discussed in Section 2), is introduced tc account
for the effects of the membrane load on the bending stiffness.
This problem also requires the introduction of a second displace-
ment component, u, acting in the axial direction,

ux) = (1 - %)ui + <%>uj . (46)
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It should be noted that, although the functional form of the
plastic strain distribution, as shown in Eq. (44), does assume
the existence of a neutral axis located within the cross section
of the beam element, the present analysis is capable of consider-
ing plastic sections in which the neutral axis is not located
within the thickness of the beam, i.e., the strains at the upper
and lower surfaces are of the same sign. This situation occurs
when the membrane stresses are larger than the bending stresses.
The treatment of this situation is accomplished by modifying the
functional form of the plastic strain distribution given in
Eq. (44). This modification is presented in Appendix D.

The present method has also been extended to treat the more
complex problem of the plastic bending of a plate.

Rectangular Bending Element

A typical rectangular plate element is shown in Fig. 34.
The displacement function chosen is the one originally used by
Bogner, Fox, and Schmit (Ref. 41), and is in terms of products
of first order Hermitian polynomials.

E: Z ((”<©H“>mhv +Iﬂ“<aﬁ(>mkm,
i=1 j=1

x1]
(47)

+ﬁ”@m“%mwg +H“%@ﬂ”mmw,

yij xyij>
where £ = x/a, n = y/b, a is the length of the rectangular
element in the =x-~direction, and b is the length in the
y=-direction, and where

(l)(v) = 2v7 - W41
(1)(v) = “2V3 + 3v2
(48)
(l)( ) = v3 B v
(1)(V) = v3 S
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and the quantities Wijs aWoxijs bWsyij and abW’xyij are
nodal generalized displacements.

The components of plastic strain are assumed to vary as
products of zero order Hermitian polynomials in the plane of the
element and linearly through the cross section from their values
at the upper (or lower) surface to zero at the elastic-plastic
boundary. The functional representation for this distribution
may be written as

0 0
cGoy.0) = (25F) Z Z 539 @usY (e, “9)
t = 2z i=
where
(0)(v) =1 -v
(50)
(0) W) = v
t is the half-thickness of the element,
z represents the ordinate of the elastic-plastic
boundary, and
eij are the nodal values of the plastic strain.

The function defining the elastic-plastic boundary is also as-
sumed to be in the form of products of zero order Hermitian poly-
nomials as shown in Fig. 34 and written here in the following
form:

2(e,y) = Z Z Bop) (9)HGY (z, (51)
i=1 j=1

where Zij represents the depth of the elastic-plastic boundary
through the thickness at node ij. The value of the depth, which
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must be determined at each of the four nodes of the rectangular
element, is computed from the total strains by means of a proce-
dure outlined in Appendix E.

The foregoing assumptions associated with the plastic strain
distribution and the representation of the elastic=-plastic
boundary ensure compatibility of these quantities along element
boundaries.

The problem of combined bending and membrane loading re-
quires the introduction of assumptions for the in-plane displace-
ment components, u and v, in the x and y directions,
respectively. For the rectangular element these displacements
were chosen as products of zero order Hermitian polynomials.

uGxy) = z 2 BoD (O)HSY (M, (522)
i=1 j=1

vix,y) = z z H(O) (ﬁ)H(o)(n)v . (52b)
i=1 j=1

In addition, as previously stated for the beam element, the prob-
lem of combined loading requires investigating states of stress
and strain on both the upper and lower surface. This extension
also requires a separate determination of the position of the two
different elastic-plastic boundaries. Therefore, the functional
representation of the plastic strain distribution and the repre-
sentation of the elastic-plastic boundaries are taken to be of
similar form to Egqs. (49) and (51), written for both the upper
and lower surface.

Triangular Bending Element

A typical triangular bending element is shown in Fig. 35.
The displacement function chosen for the lateral displacement is
the one presented in Refs. 42 through 44 and is a full 2l-term
quintic polynomial in terms of unknown coefficients a as
follows:

i
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_ 2 5
wix,y) = a, +ayx+ asy‘+ a,x” + a xy oo Fagy o {53)

The components of plastic strain are assumed to vary lin-
early in the plane of the element. This linear distribution can
be written as

_ 3
e{x,y,2) = (i - E) Z: w; €; (54)
T |

where ; represents the area coordinates discussed in detail in
Appendix F, and €; 1is the value of the plastic strain at node
i.

The ordinate of the elastic=-plastic boundary is alsc assumed
to vary linearly in the plane of the element, and may be written
as

Z(x,y) = E: axzi . (55)

A linear variation was chosen for the in-plane displacement
components, u and v, in the x and y directions, respec~
tively, for the triangular element. These displacement compo-
nents may be written in terms of the area coordinates wj; in the
following form,

3

u(x,y) = Z WU (56a)
i=1
3

vix,y) = z: W,V (565L)
i=1
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Once again, the extension for the combined loading case requires
writing the functional representation of the plastic strain dis-
tribution and the elastic~plastic boundary in a form similar to
Egs. (54) and (55), respectively, for the upper and lower por-
tions of the element separately.

The above assumptions are made in the development of the
governing linear matrix relation as formulated to include the ef-
fects of initial strain, and spec%fically affect the element ini-
tial strain stiffness matrix, [k ], of Eq. (15). Initial
strain stiffness matrices for the beam element, the rectangular
plate element, and the triangular plate element are given in
Appendices D, G, and H, respectively. The initial stress stiff-
ness matrix for the beam element is given in Ref. 45, for the
rectangular plate element in Ref. 11, and for the triangular
plate element in Appendix I.

In the expression for the initial strain stiffness matrix,
which is dependent on the assumptions concerning the distribution
of both total and plastic strains, the quantity V, is the vol-
ume of the plastic region in each finite element as determined by
the representation of the elastic-plastic boundary. Conse-
quently, the elements of the initial strain stiffness matrix are
a function of, among other quantities, the depth of the elastic~-
plastic boundary at each node and must therefore be recomputed at
each step in the incremental loading process.

The use of a predictor procedure solution technique is
necessary in these problems, because the depth of the elastic-
plastic boundary (and the current value of plastic strain) at
those nodes of the structure that are in the plastic range cannot
be expressed explicitly in terms of total strain with sufficient
ease to make feasible the application of the direct substitution
procedure. The position of the elastic-plastic boundary is de-
termined at the end of each load increment, and is assumed to re-~
main fixed during the next increment.

The treatment of combined bending and stretching in the plas-
tic range requires some additional development. Two types of
problems may be encountered. In one, the membrane stresses are
generated as a consequence of the changing geometry of the struc-
ture. The effects of the changing geometry on the response of
the structure as it deforms must be accounted for in the elastic
and plastic ranges. Application of the methods to this type of
problem will be discussed in Section 5. The second type of
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problem, considered now, is limited to cases in which a membrane
load is applied to the structure and the effects of changing
geometry are neglected.

Although the analysis for combined bending and membrane be-
havior is of sufficient generality to permit the treatment of any
combination of membrane and bending loading, the applications
presented here consist only of those cases in which the applied
membrane load is restricted to values less than that necessary to
initiate plastic deformation. The lateral loads are applied in
finite increments while the membrane load is held constant.

As previously stated, the solution of these problems re-
quires that an additional stiffness matrix, termed the initial
stress stiffness matrix, be introduced to account for the effects
of the membrane load on the bending stiffness. The elements of
this matrix are functions of, among other quantities, the mem=-
brane state of stress that exists in the elements prior to the
application of additional loading in the next step. Plastic de-
formation causes a redistribution of both bending and membrane
states of stress existing in the structure. Thus, with the ex-
ception of statically determinate problems where the membrane
stress resultants remain constant, the elements of the initial
stress stiffness matrix change, in general, with increasing loads
because of the changes in the values of the membrane stress re-
sultants.

In addition to modification of the initial stress stiffness
matrix, the combined loading problem also requires the determina-
tion of the states of stress and strain (elastic and plastic) at
the upper and lower surface separately, at the nodes of each
finite element. Consequently, these considerations require that
the effective plastic load vector of Eq. (20b) be written in the
form,

i [ * i * 1 U 1
qb k'bu : kbL eo
- il e e b o e o e (57)
]
* ) Kk L
qm Lkmu i kmL_ e0
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where {qp} and {qp} represent the bendini and membrane compo-
nents of the effective plastic load, and [kbu] and [kzu] are

the bending and membrane components, respectively, of the initial
strain stiffness matrix for plastic strains developing from the
upper surface. Corresponding definitions apply to [kﬁL] and

[kﬁL] for plastic strains developing from the lower surface.

{eg} and [eg} are the values of the nodal plastic strain on
the upper and lower surface, respectively.

Thus, with attention restricted to thin flat plate elements
in the presence of membrane stress states, Eq. (21) may be writ-
ten for an individual element as follows,

@1+ 1] o [ (aa [P (aeg [ agy )P

~~~~~~~~~~~ TR ) SO K T g - (58)

|
0 [k ] | lad AP, Aq

where the elastic stiffness matrix, [ke], of Eq. (21) now in-
cludes [kéo)], the usual bending stiffness matrix, [k§l)],

the initial stress stiffness matrix, and [kyp], the membrane
stiffness matrix. The displacement vector {Adg} is now sepa-

rated into {Adgp} and {Adgp), the increments of the general-
ized displacements associated with bending and membrane deforma-
tion, respectively; and the load vector {Ap,} 1is separated into

{Apgp) and {Apgp)}, the increments of lateral load and in-plane

load, respectively. With these definitions, Eg. (58) can be ex-
panded and written as two matrix equatiomns,

i i i i-1
{[kéc)] + [kél)]} {Adob} = {Apob} + {Aqb} (59a)

and

{k 11 {Adom}i = {Apom}i + {Aqm}iml . (59b)
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Each of these matrix equations may be solved separately to deter=~
mine the increments of generalized displacement associated with
bending and membrane deformations. The solutions follow for the
increments of total strain, stress, and plastic strain. The new
locations of the elastic-plastic boundaries at nodes are deter-
mined and used in forming the initial strain stiffness matrix.
The redistribution of the membrane stresses is alsoc determined
(see Appendix J) and used to compute the elements of the initial
stress stiffness matrix to be used in the next increment.

Finally, although Egs. (59a) and (59b) are solved inde-
pendently, this does not imply that bending and membrane behavior
are uncoupled in the plastic range. The bending affects the mem=
brane results through the plastic load vector, since plastic
strains are computed from the combination of bending and membrane
stresses. The membrane strains affect the bending results simi-
larly through the bending plastic load vector and additionally
through the redistribution of membrane stress resultants, which
modifies the elements of the initial stress stiffness matrix.

Cyclic Loading

In order to develop a method capable of representing the
cyclic behavior of plates in pure bending, the simpler case of
cyclic loading of a beam is used first as a model. The procedure
is then generalized to account for the more complex multiaxial
stress state present in plate structures. A correspondence be-
tween uniaxial and "effective" stress (strain) concepts is used,
with the procedure kept as consistent as possible with the chosen
plasticity theory and finite-element and kinematic strain assump-
tions.

Various possible elastic, ideally-plastic stress (or strain)
states for a beam during one complete cycle of pure bending are
shown in Figs. 36a<k. The corresponding positions of the stress
states at the extreme fiber on a representative cyclic stress-
strain curve for a strain-hardening material are indicated in
Fig. 36a. The points on this curve are merely meant to indicate
their relative locations during the load cycles and naturally do
not correspond to their actual positions, which would require an
elastic, ideally-plastic stress=-strain curve. The plastic strain
and stress (elastic strain) distribution for the first cycle
during initial loading is indicated in Fig. 36a. All distribu~
tions are based upon previous kinematic and finite element total
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and plastic strain assumptions. From point "a", the structure is
assumed tc unload elastically. The stress distribution and
plastic strain distribution at incipient plastic deformation on
reversed loading are shown in Fig. 36b. Note that the stress
distribution is bilinear while the cumulative plastic strain dis-
tribution is linear. Note alsc that the elastic range for un-
loading and reversed loading is twice the initial elastic range
for loading (o,). This situation may not be true for multiaxial
behavior because of a redistribution of stresses due to displace-
ment of the stress state along the yield surface. As yielding
during reversed loading progresses, the elastic strain distribu-
tion, total plastic strain distribution, and plastic strain gen-
erated during reversed loading are shown in Fig. 36c. Although
the cumulative plastic strain has a bilinear distribution, the
plastic strain developed during this phase of the cyclic loading
is linear. In this figure, the current elastic-plastic boundary
has not yet propagated through the depth as far as the previous
boundary nor is the slope of the fictitious elastic distribution
(line 1-2 in Fig. 36c) the same as that for loading. The fic~-
titious elastic distribution referred to here is the stress dis-
tribution that would exist at the cross section if plastic de-
formation did not occur during the current half-cycle. Hence,
because of the change in slope of the fictitious elastic dis-
tribution, the location of the elastic-plastic boundary through
the depth cannot be calculated by using the total strain dis-
tribution, as outlined in Appendix E, and a different method must
be developed. In this connection, it is interesting to note that
the new slope of the fictitious distribution intersects the
neutral axis not at the zero total strain location but at the
yield strain (stress) during the loading cycle. This is alsc the
case in Fig. 36b for the actual elastic distribution. If loading
were to proceed further until the depth of the current elastic-
plastic boundary, 2z, is less than the previous one as measured
from the neutral axis (see Fig. 36d), the cumulative plastic strain
distribution would now be linear, but the plastic strain gen-
erated solely during reversed loading would have a bilinear dis~
tribution.

If, instead, one unloads and reloads from the situation de-
picted in Fig. 36c (the current value of Z 1is greater than the
previous one), Figs. 36e, f, g, and h indicate the total plas-
tic and current cycle plastic strains occurring at incipient
yielding, further yielding, and growth of the current plastic
region beyond both previous regions. If unloading and reloading
proceeded from the point illustrated in Fig. 36d, it would fol-
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low the stages shown in Figs. 36b, ¢, and d (with the pictures
revised to indicate the current sense of loading). In all cases
(Figs. 36e, £, g, h or 36b, ¢, d), either the cumulative plas~-
tic strain or the plastic strain developed during the current
cycling phase is linear. The only obstacle to describing cyclic
behavior for an arbitrary number of cycles (using the current
assumptions) appears if the second unloading and reloading occur
from the state depicted in Fig. 36f [i.e., if the current value

of z >z E(l)]. What happens upon reversing from this load
is shown in Figs. 36i, j, k. The difficulty arises for the sit-
uation depicted in Fig. 36k. For this state of stress the elas~-
tic-plastic boundary has propagated further toward the neutral
axis than for the states of stress shown in Fig. 36c. In this
situation neither the cumulative plastic nor current plastic
strain is linear. Such linearity is essential for the amalysis
in its present state, since it is assumed that the plastic strain
distribution varies linearly through the thickness from some
value at the extreme fibers to zero at the elastic~plastic bound-
ary. This assumption is employed in the formation of the initial
strain stiffness matrix. Similar occurrences of even more multi-
linear distributions of plastic strain in subsequent cycles com-
plicate the problem still further, and for this reason the cur-
rent investigation is limited to one full cycle.

The generalization of the uniaxial case to the multiaxial
problem is depicted in Fig. 37. Only the upper half of the plate
is shown. The following definitions are made by analogy with the
beam problem:

s
yield
strain at initial yield during the first loading, where

Jy 1is the second invariant of the stress temsor 0jj;

s(1)
e

= 4/ Jz(oij) , with 053 computed, using the

V4 JZ(Gij) , with cij computed, using the

elastic strains at the end of loading;

Sél) = 4/ Jz(cij) , with Gij computed from the elastic

stress=strain relations, using the total strains as elastic
strains, with Sg referred to as the fictitious effective
elastic stress;
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B =5,

yleld and is a measure of strain hardening;

Z (D

B = ““’“:YTT f is the neutral axis intercept of the slope

t - z
of the fictitious effective elastic stress distribution
during reversed loading, and is seen to be based ?n the

assumption of linearity of the distribution of Se
the plastic range;

s _ g _ g
T e

> and may be considered as effective

stress lost through plastic behavior upon loading;

<(2) — . .
Syleld v J (0 ) with Uij computed, using the

stresses (derlved from elastic strains) at initial yield
during unloading or reversed loading;

V4 JZ(Gij) , with Gij computed, using the indi-
vidual components of elastic strain, ezJ i;),
it is the effective stress that would exist if the plate
did not go plastic during reversed loading;

§(2) may be considered as effective stress lost through
plastic behavior during reversed loading.

Z

i.e.,

Hence for loading, we have

similar triangles, as follows,

calculated by the method
of Appendix E. For reversed loading, 5(2), is determined from

(l)1d (2)1d 8
z(2) _yle M_Yle ~ 60)
stV w5 -8
yleld £
when ;(2) > ;(1), and is determined from Eq. (E.9) of Appen-
dix E, with o_ replaced by 53(72)1& when =(2) Sz(l)- At
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;(2) = £, since S_= S(2> and

e yield’
its value then decreases toward zero as S, increases, since all
other quantities remain fixed.

initial reversed yielding,

In Fig. 37, the quantity Sé1>, i.e., the actual effective
stress, is shown to vary linearly from the top (bottom) surface
to the elastic-plastic boundary. This is not exactly true, even
with the linear plastic strain assumptions made here. This vari-
ation is "almost" linear (the square root of a quadratic func~-
tion), however. Stanton (Ref. 18), who makes no assumption on
plastic strain or effective stress distribution through the
thickness, shows results for thin plates that indicate that their
departure from linearity is indeed small. This additional as-

5 ~(2)

sumption was needed here to determine P and =z
- f T} —
~(2) 7O

some measure, by the continuous variation of =z when the
transition takes place from one method of calculation, Eq. (60),
to the other, Eq. (E.9) (see Fig. 36d).

when

. The validity of this assumption is supported, in

The cycling procedure for one full cycle consists of loading
up to a prescribed maximum value. The plate is then unloaded
elastically and the new critical load for reversed yielding, P*,
is calculated by the method described in Appendix E of Ref. 1l.
Here, however,

{0} = P [E] W] {do}+ {GR} (61)
where [EO} are the displacements for a unit load and {oR} are
the residual stresses. Thus {B} in Eq. (E.3). of Appendix E of
Ref. 11 equals [E][W]{E@} in the current analysis. In addition,
the value of {op} 1is determined in the following manner. When
the maximum desired load is reached, the final value of the
"effective plastic load," {Qf}, 1is stored and remains on the
structure. The residual displacements, stresses, etc., are cal-
culated in a manner similar to that presented in Appendix G of
Ref. 11. First, the residual displacements are calculated by
setting (P} = 0 in Eq. (22b).

{DR} = [Ke]“}‘ {Qf} (62)
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where {Qf} = [K?]{eof}a Now the residual total strains are ob-
tained,

fea} = 11 {a] (63)

and the residual elastic strains are calculated,

{eg} = {eg} - {e} . (64)

Finally, the residual stresses are

Jo} = (1 {eg] (65)

The residual stresses and strains, as computed by means of
the above procedures, are valid at the end of any cycle of load-
ing only if the zero load state is reached without the occurrence
of reversed yielding. Where this is not the case, incremental
plasticity calculations must be performed from the point of ini-
tiation of reversed yielding, as determined by the procedure out=-
lined in Appendix E of Ref. 11, until the zero load state is
reached. At this point the above relations for residual stresses
and strains can again be used.

Upon reversed yielding the plastic load vector generated in
this portion of the cycle is added to that obtained at the end of
the loading cycle. Thus, although the accumulated plastic strain
distribution is not linear, it is the sum of two linear portions.
This procedure continues until the load is reversed, or until the

new z [i.e., =z 2)  as previously defined] is smaller than the
previous z. For the latter case, the plastic load is calculated
by using only the cumulative plastic strain, since this is now
linear (see Fig. 36d), even though the current plastic strain
distribution is not. For subsequent loading the total plastic
"loads" obtained during both loading and reversed loading are
saved and remain on the structure. The new critical load and
residuals are calculated from the sum of these loads.

57



Results

The goals associated with the case of bending, alone or in
combination with membrane loads, include verification of the as-
sumptions employed in the analysis (plastic strain distribution
through the thickness, location and shape of the elastic-plastic
boundary within the element, etc.) and the feasibility of using
the developed methods as amalytical tools for plastic bending
problems. To this end extensive computations were carried out
for beams and plates under pure bending or combined bending and
membrane lcads. Our solutions are compared with previously pub-
lished data, where such are available.

A discussion and tabulation of computation times for several
representative problems are presented in Appendix K.

Beams. — To demonstrate the feasibility of the plastic
bending analysis, the method is applied initially to two beams,
a simply supported and a cantilever beam. Results for these
structures from an exact solution of the governing differential
equation assuming elastic, ideally-plastic material behavior are
available for comparison. As a consequence of assuming elastic,
ideally-plastic behavior and of the fact that both structures are
statically determinate, an analytic expression can be written
that relates the depth of the elastic-plastic boundary to the
applied load. The finite element analysis is applied to the beam
structures with the use of this relationship, thus providing a
means of determining the validity of assumptions made in choosing
such quantities as the displacement function, the form for the
plastic strain distribution, and the representation of the
elastic=plastic boundary.

Figure 38a shows a nondimensionalized load versus central
deflection curve for a uniformly loaded simply supported beam.
Six elements were used in the idealization of one-half o£ the
beam. 1In this figure, wg 1is the center deflection, W is the
center deflection at the maximum load for which the beam is en~-
tirely elastic, and p represents the nondimensional load
parameter,
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where p 1is the applied load intensity and pg = 4b0g. The re-
sults obtained from the finite element analysis compare quite
favorably with the corresponding results from the exact solution
(Ref. 36), as shown in Fig. 38a. The collapse load determined
from the near vertical slope of the load-deflection curve is ap-
proximately 3 percent higher than the exact cecllapse load; which
occurs at a value of p = 1.

The propagation of the elastic=-plastic boundary through the
thickness anc in the plane of the elements is shown in Fig. 38b.
From this figure it can be seen that although the depth of the
boundary at plastic nodes is exact, the assumption associated
with its shape between nodes (i.e., linear) may lead to irregu-
larities in its representation, as evidenced at the load values
of p=1.00 and p = 1.03. These irregularities indicate that
the actual boundary lies between the nodes, 6x/a = 3 and
6x/a = 4, on the upper and lower surface of the beam. The error
introduced by the assumption of a linear boundary between nodes
can be reduced by using more elements in the idealization of the
beam. Alsoc noteworthy in Fig. 38b is the development of a fully
plastic cross section at the center of the beam at a load corre-
sponding toc p = 1. 1In a continuum analysis, the development of
this fully plastic cross section is sufficient toc cause collapse
of the structure. In the finite element analysis, however, col-
lapse is not indicated until both cross sections of the element
containing the center of the beam become fully plastic.

Results in the form of a nondimensionalized load versus tip-
deflection curve for a uniformly loaded cantilever beam are shown
in Fig. 39a. Elastic, ideally=-plastic material behavior was as-
sumed. Comparison with results from an exact solution, shown as
the solid curve in the figure, indicates good correlation up to
the collapse load. For this problem, as for the simply supported
beam, the depth of the elastic-plastic boundary can be directly
related to the applied load. Once again, this relationship was
used to obtain the results shown in the figure.

The propagation of the elastic=-plastic boundary through the
cross section and in the plane of the elements is shown in
Fig. 39b. As indicated in the figure, the development of the
plastic region is much more localized for this structure than for
the simply supported beam. Consistent with a continuum approach,
collapse of this structure is indicated in the finite element
analysis by the development of one fully plastic cross section at
the root of the beam.
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For both the simply supported and the cantilever beam, as
previously mentioned, an exact relationship was used between the
depth of the elastic=plastic boundary at nodes in the plastic
range and the applied load to obtain results from the finite ele-~
ment analysis. Use of this relationship, which admittedly does
not exist for most structures of interest, was justified as a way
to check the wvalidity of the assumptions made in choosing such
quantities as the displacement function, the plastic strain dis-
tribution, and the representation of the elastic=-plastic boundary.
As the results indicated, these assumptions appear to be justi-
fied for the finite element analysis.

Since the depth of the elastic-plastic boundary is not gen=-
erally known at the current load step, a more generally appli-
cable procedure was devised and applied to the cantilever beam.
Results were recomputed and a load-deflection curve was obtained
by using an approximate value for the depth of the elastic~
plastic boundary (see Fig. 40). This value, for any increment of
load, is based on the total strain distribution determined at the
end of the preceding load increment. This procedure cannot lead
to the development of a fully plastic cross section. Conse-
quently, it is assumed that a fully plastic cross section exists
at a node when plasticity has developed through a specified pro-
portion of the thickness. The deflections and slope of the load-
deflection curve for this structure increase quite rapidly beyond
a value of load for which plasticity has developed through 80
percent of the end cross section. Thus in the analysis this
value was chosen as the criterion to determine the development of
a fully plastic cross section. The degree of approximation asso-
ciated with the use of the approximate procedure for determining
values of the depth of the elastic-plastic boundary is illus-
trated in the figure by a comparison with the exact solution.

The results can be seen to compare favorably for most of the load
range considered. The maximum divergence, which occurs in the
vicinity of the collapse load, is about 7 percent.

Also shown in Fig. 40 are results for the cantilever beam
for the case of strain-hardening material behavior. These re-
sults, shown as the dotted curve, are compared with the corre-
sponding results obtained by assuming elastic, ideally-plastic
behavior. The close agreement of results for strain-hardening
and perfectly plastic behavior can be attributed to the use of
Ramberg-0sgood strain hardening parameters chosen to approximate
the elastic, ideally-plastic stress-strain curve. The slope of
the locad-deflection curve for strain-hardening behavior illus-
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trates that the beam still possesses some stiffness beyond the
theoretical collapse load predicted by assuming perfectly plastic
behavior.

Figure 41 illustrates the application of the procedure to a
simply supported beam subjected to combined bending and axial
loads. As previously discussed, the analysis for this problem
requires the introduction of an initial stress stiffness matrix
to account for the effect of the axial load on the bending stiff-
ness. Independent determination of the position of the two
elastic-plastic boundaries relative to the upper and lower sur-
faces is also required for this analysis because the axial load
has the effect of introducing asymmetry about the middle surface.
Results have been obtained for cases inwhich a uniform lateral
load acts in conjunction with a constant tensile or compressive
axial load, indicated in the figure by T = +1000 and T = -1000,
respectively. These results are compared with those for the case
of pure bending, indicated as T = 0. As shown in the figure,
the effect of the axial compressive load, compared to the case of
pure bending, is to reduce the structure's stiffness while the
tensile load increases it. No solution to this problem by using
a continuum analysis similar to the one developed for pure bend-
ing in the plastic range appears to be available for comparison.
For the case of compressive axial load, the lateral load was in-
cremented to a value that resulted in failure of the structure.
This failure is indicated in Fig. 41 by the near vertical slope
of the load-deflection curve. It should be noted that in this
problem it was not necessary to develop a completely plastic
cross section for collapse to occur. The reduction of stiffness
caused by the axial compressive load and the propagation of the
elastic-plastic boundary through only a portion of the thickness
was sufficient to cause failure. This type of failure is asso-
ciated with plastic buckling rather than with the formation of a
mechanism.,

Of special interest in elastic and elastic-plastic struc-
tural analysis is the behavior of plates with various shapes and
boundary conditions. In addition, the plastic analysis of struc-
tures with cutouts is extremely important, since the cutouts gen-
erally result in regions of high stress gradient that can ini-
tiate plastic flow. It was on this basis that the structures
considered in this section were chosen to demonstrate the plastic
pure bending analysis of plates. For these structures, at least
an elastic solution and, for most, an elastic~plastic or limit
analysis solution are available in the literature.
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Rectangular plates — bending alone. — The procedure for

pure bending was applied first to a simply supported uniformly
loaded square plate. Using a 36-element idealization to repre-
sent the quarter panel, load versus central deflection curves for
this structure, assuming elastic, ideally-plastic and elastic,
strain-hardening material behavior, have been determined and are
shown in Fig. 42a. Once again, as in the case of the beam, the
close agreement of results for both types of material behavior is
attributable to the choice of strain-hardening parameters that
approximate elastic, ideally-plastic material behavior.

The Ramberg=0sgood parameters that were used in computing
the hardening coefficient, as outlined in Appendix A, are:

a 2

107 1b/in.

0.7 35,400 lbiin,2

n 19.5 .

These parameters were used together with a yield stress of
9 je1q = 30,000 1b/in.2, and Poisson's ratio v = 0.30.

Also shown in Fig. 42a 1is a comparison of results from the
present analysis, with elastic, ideally-plastic material behavior
being assumed, with those of Ref. 38. Agreement is good for most
of the load range considered, with the greatest discrepancy oc-
curring as the magnitude of the locad approaches the collapse
value for the structure.

The idealization and yield sequence for the square plate are
shown in Fig. 42b for the upper left-hand quadrant of the struc-
ture. Yielding originates on the upper and lower surface at the
corners of the plate at a load of p = pa2/6M6 = 0.502 and com~

mences at the center cof the plate at p = 0.579. Beyond this
value of load, the plastic regions propagate from the vicinity of

the corners and the center of the plate until a collapse mecha-
nism forms.

The collapse load for this structure, determined by assuming
elastic, ideally=-plastic material behavior, is the value of the
load at which the pattern of fully plastic elements is such that
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the structure becomes a mechanism. The collapse load, as deter-
mined by the present anmalysis is p = 1.137 and compares favor-
ably with a value of 1.070 obtained from a limit amalysis de-
scribed in Ref. 35. The pattern of development of the plastic
region in the plane of the plate and the propagation of the
elastic=plastic boundary through the thickness of the plate are
shown in Figs. 42¢ and 42d, respectively. The crosshatched area
in Fig. 42¢ vrepresents those regions of the plate in which plas=-
ticity has developed to some degree but extends through less than
80 percent cf the thickness. The shaded area represents those
regions in which plasticity extends through more than 80 percent
of the thickness. Considering the latter region as fully plastic
leads to the development of plastic hinges along the diagonals of
the square plate, as shown in Fig. 42c. As in the case of the
beam, this criterion is necessary because determining the depth
of the elastic=-plastic boundary on the basis of total strains
cannot lead to the develcpment of a fully plastic section.

The pattern of development of the plastic region in a narrow
rectangular plate (n = 0.3) 1is shown in Figs. 43a-43c. 1In
Fig. 43a the 80 percent criterion was again used to determine
the pattern of fully plastic sections in forming the collapse
mechanism. From this figure it is evident that the sections that
form the collapse pattern do not all lie on the diagonals of the
plate.

A comparison of available upper bound solutions for the load-
carrying capacities of rectangular plates of various aspect
ratios is shown in Fig. 44a. The solid curve represents the so-
lution (Ref. 46) obtained by using the von Mises yield criterion
in conjunction with assumed collapse pattern (1) shown in the
figure. The dotted curve, taken from Ref. 47, represents the
upper bound solution obtained by using the Tresca yield condition
in conjunction with assumed collapse pattern {(2). Results from
the finite~element analysis, represented by the solid circles,
indicate that displacement pattern (2) provides a more accurate
representation of the collapse mechanism than does pattern (1).
An upper bound soluticn, obtained by the present authors, using
the second displacement pattern in conjunction with the von Mises
yield condition is shown as the dashed curve in Fig. 44a. The
results from the present analysis compare favorably with this
solution and are slightly below it except for extremely low as=-
pect ratios. For such narrow plates, the use of the 80 percent
criterion in conjunction with the calculation of the depth of the
elastic~plastic boundary from the total strain distribution of
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the preceding step is not adequate. A relaxation of the 80 per-
cent criterion based on a careful examination of the load~deflec-
tion history appears to be warranted. A possible alternative
might be to incorporate an iterative procedure in the method of
solution.

It should be noted that in Fig. 44a, the length of the plate,
2a, 1is kept fixed while the width, 2b, decreases to zero.
Thus the nondimensionalized collapse load p = pa2/6Mb increases
with decreasing aspect ratio, and approaches infinity as the as-
pect ratio approaches zero. In Fig. 44b the width is kept fixed
while the length increases to infinitge For this case the non-
dimensionalized collapse load p = pb4/6M, decreases as the as-
pect ratio decreases, and appears tc approach the collapse load
for a uniformly-loaded infinite strip. The collapse load for the
infinite strip is computed to be p = 0.385, and is determined
from a yield limit analysis by assuming that the collapse mecha-
nism consists of a "yield-hinge" formed along the entire length
of the plate.

The collapse pattern and the propagation of the elastic-
plastic boundary through the thickness along two axes of a uni-
formly-loaded square plate with three simply supported edges and
one free edge are shown in Figs. 45a-45c. The fully plastic
region appears first in the vicinity of the midpoint of the free
edge and propagates from this point and from the corners formed
by the simple supports to form the "Y" shaped collapse mecha-
nism. The load at which the mechanism forms is p = 0.715. This
compares fairly closely with a collapse load of p = 0.654, ob-~
tained from a yield limit analysis in Ref. 35. The curve of load
versus deflection at the midpoint of the free edge is shown in
Fig. 45d. The slope of this curve is nearly vertical as the
magnitude of the load approaches the collapse value.

Results for the elastic, ideally=-plastic behavior of a uni-~
formly-loaded clamped square plate are shown in Fig. 46. The
collapse mechanism for this structure, as shown in Fig. 46a,
consists of a pattern of fully plastic elements formed along the
diagonals and the edges (with the exception of the corners) of
the plate. The value of the load at which this occurs, as deter-
mined from the present analysis, is p = 2.59, which is signifi-
cantly higher than those values determined from a yield limit
analysis. A value of 2.31 is predicted in Ref. 48, and a value
of 2.0532 1is given in Ref. 35. The inability of the present
analysis to predict the collapse load of the clamped plate
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accurately may be attributed, in part, to the need for a much
finer idealization of the structure, particularly along the edges
where there is a rapid change in curvature.

The propagation of the elastic-plastic boundary through the
depth along y = 0 1is shown for three values of load in Fig. 46b.
As indicated in the figure, two plastic regions exist: the first
is localized in the vicinity of the clamped edges, and the second
region originates at the center of the plate and propagates
toward the edges. At a load of p = 2.41 the latter region is
seen to be of irregular shape for x/a > 0.5.

Deflection profiles along y = 0 are shown for three values
of load in Fig. 46c. The load of p = 0.617 represents the
maximum elastic load. The deflection profile for p = 2.41 il-
lustrates the diminishing effect of the clamped boundary in re-~
straining displacements in the region near the edges. At this
value of load the sections along the edges, with the exception of
the corners, are nearly fully plastic.

The distribution of moments My and My along y =0 and
y = a are shown for two values of load in Figs. 46d to 46g.
The moments are nondimensionalized with respect to the fully
plastic moment M, (i.e., the moment at a fully plastic section
for the one-dimensional case of a beam). The redistribution of
moments as a consequence of plastic flow is clearly evident in
these figures. Similar redistributions are indicated in Refs. 38
and 39.

The collapse pattern of a uniformly-loaded simply supported
square plate with a centrally located square hole is shown in
Fig. 47a. A free edge is assumed along the perimeter of the
hole, and the ratio of the width of the hole to the width of the
plate is 1/3. The collapse pattern and the value of the non-
dimensionalized collapse load, p = 1.01, are very nearly the
same as those obtained for the simply supported square plate
without the hole. The magnitude of the collapse load obtained in
the present analysis is approximately 3 percent greater than the
value of p = 0.977 obtained from the upper-bound yield limit
analysis of Ref. 35.

Distributions of bending moments in the x and y direc~
tions along the axis of symmetry y = 0 are shown for two values
of load in Figs. 47b and 47c, respectively. At a load of
p = 0.222, which represents the maximum elastic load for this
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structure, the maximum value of Mxz occurs in the vicinity of
6x/a = 4 and the mgximum value of My at the edge of the hole.
In the case of My the redistribution that cccurs at a load of
p = 0.950 1is pronocunced. At this load the maximum moment is
located at some distance from the edge of the hole. A similar
redistribution is indicated in Fig. 47d for the case of the
moments My and My along the diagonal.

The maximum twisting moment Mgy occurs at the corner of

the square hole for purely elastic behavior, as shown in Fig. 47e.
As a consequence of plastic deformation, the maximum value of
My shifts to the corners of the plate.

In Fig. 48, resulis obtained for the uniformly-loaded simply
supported square plate by using the 16-degree-of-freedom rec-
tangular element are compared with results obtained by using the
18~degree~of~freedom triangular element. The total number of
degrees of freedom used in the representation of a quadrant of
the structure is 144 for the rectangular and 150 for the tri-
angular element. Load increments of Ap = 0.0046 are used for
both idealizations. Results in the form of a deflection profile
and moments M, and My along v = 0 are in complete agreement

at the maximum elastic load p = 0.50. Results for a load of
p=0.95 are virtually the same for both idealizations, with the
triangular element solution predicting slightly smaller displace-
ments and moments along y = 0.

The value of the collapse load obtained by using the tri-
angular element is the same as that obtained by using the rec-
tangular elements. In addition, the collapse pattern and the
propagation of the elastic-plastic boundaries determined by using
the triangular elements are the same as those shown in Figs. 42c¢
and 42d. ‘

The idealization and the collapse pattern of a uniformly-
loaded simply supported square plate with a centrally located
circular hole are shown in Fig. 49a. The idealization of a quad-
rant of the structure consists of a network of 81 triangular ele-
ments with 49 nodes, resulting in 266 degrees of freedom. A free
edge is assumed around the circular hole, and the ratio of the
diameter of the hole to the length of the plate is 1/3.

Collapse of this structure, as predicted by the present
analysis, occurs at a load of p = pa2/6M0 = 1.07. The collapse
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mechanism consists of a region of fully plastic nodes formed
along the edge of the free hole and extending along the diagonal
to the corner of the plate. %

The deflection and circumferential moment arcund the cir-
cular hole are shown for three values of load in Figs. 49> and
49¢c. At the maximum elastic load, p = 0.402, the results from
the finite element analysis are compared with the results of a
previous investigation, Ref. 49. The correlation of results for
moment and deflection is quite good, with a maximum discrepancy
of 3 percent occurring at 6 = 0°.

The variation of the deflections around the hole from 6=0°
to 6 = 45° increases as the magnitude of the load increases
into the plastic range. However, the effect of plasticity re-
duces the variation of the circumferential moment around the
hole, and at p = 1.02 the circumferential moment distribution
is nearly uniform at a value equal to the fully plastic moment,

My

Deflection profiles of the plate along the horizontal (or

vertical) axis of symmetry, 6 = 0°, and along the diagonal,

= 45°, are shown for three values of load in Figs. 49d and
49e. The distribution of radial and circumferential moments
along 6 = 0° and 6 = 45° are shown in Figs. 49f-49i. The re-
distribution of moments resulting from plastic deformation is
very much in evidence in these figures. It is of interest to
note in Fig. 49i that, in a limited region near the hole bound-
ary, values of the circumferential moment along the diagonal are
greater than that of the fully plastic moment. This can occur
only for states of multiaxial stress where one stress component
exceeds the ideally-plastic yield stress of the materlal°

Circular plates — bending alone. — Two idealizations used
for the representation of circular plates and an annular plate
are shown in Fig. 50. ILdealization (a) consists of 50 elements
and 36 nodes and results in 153 degrees of freedom in represent-
ing both a simply supported and a clamped plate. Idealization (b)
represents a consistent refinement of idealization (a) and con-
sists of 128 elements and 8l nodes and results in 387 degrees of
freedom for both the simply supported and clamped plate. The un-
shaded triangles of idealization (b) are employed in the repre-
sentation of an annular plate. The elimination of the shaded
triangles results in a 110 element, 72 node idealization, and




320 degrees of freedom are required for the case of an annular
plate simply supported along both the inner and outer circumfer=-
ence. For the annular plate clamped along the outer circumfer-
ence and free along the inner boundary, 332 bending degrees of
freedom are required.

Results for the case of a uniformly-loaded simply supported
circular plate of radius a are shown in Fig. 51. Elastic,
ideally-plastic material behavior is assumed, with the value of
the fully plastic moment, Mgy, equal to 4000 1b in/in. Both
idealizations of Fig. 50 were used, and the results obtained from
both sets of computations were virtually the same throughout the
entire load range. Results in the form of deflection profiles,
propagation of the elastic=-plastic bcundary, and the distribution
of circumferential and radial moments are shown for three load
values in Figs. 5la to 51d.

The deflection profiles shown in Fig. 5la indicate that the
plate assumes a nearly conical shape, with the formation of a
"yield hinge" at the center of the plate, as the load approaches
the collapse value. The present analysis predicts a collapse
load of p = pa?/M, = 6.50. It should be noted that the tri-
angular elements used are conforming elements, and hence no slope
discontinuities (kinks) can exist as they do in a limit analysis.
This collapse load compares quite favorably with the value of
p = 6.51 predicted from a yield limit analysis in Ref. 50. The
limit analysis requires the entire plate to be fully plastic at
collapse, whereas in the present analysis collapse is indicated
when a "fully plastic" section forms at the center of the plate.
Beyond this point the displacements increase quite rapidly. The
elastic-plastic boundaries at various stages of loading are
plotted in Fig. 51b. Consistent with our assumptions concerning
the shape of the boundary, the actual boundary is represented by
a series of straight line segments. This shape is approximated
by the smooth curves shown in Fig. 51lb. Figures 5lc and 51d
illustrate the redistribution of circumferential and radial
moments that take place in the plastic range.

The results from the present analysis, obtained by using
load increments of Ap = pale0 = 0.025, are compared with re~-

sults from the layered finite-element approach of Ref. 12. In
the latter investigation, the elements and layers used for the
idealization of the structure numbered 20 and 40, respectively,
and the load was increased in increments of Ap = 0.100 to
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0.125. Results from both analyses correlate quite well for the
entire range of loading.

The uniformly-loaded simply supported circular plate was
chosen as a typical case for application of the plastic bending
analysis procedure to demonstrate the variation of results ob-
tained by using a range of load increments. Load versus central
deflection curves are shown in Fig. 52 for load increments rang-
ing from Ap = 0.0125 to 0.20. The results are necessarily
identical up to the load at which the yield condition is satis-
fied at the center of the structure (p = pa2/MO = 3,28). These
curves show there is a wide divergence among computed results.
This is to be expected, since the predictor procedure followed
in the present analysis uses estimated values of plastic strain
and depth of elastic-plastic boundary at nodes based on values of
these quantities computed at the preceding load level. As the
load level increases and as the loading progresses further into
the plastic range, these estimated values of plastic strain and
location of the elastic-plastic boundary become less accurate.

At a load level of p =6 the maximum difference in computed
results is approximately 25 percent. The results for Ap=0.0125
and Ap = 0.025, however, do indicate some convergence of the
results for most of the load range.

Results for the elastic, strain-hardening behavior of the
uniformly=-loaded simply supported circular plate are shown in
Fig. 53. The stress-strain curve of the material chosen for the
structure is described by the following Ramberg-Osgood parame-
ters: E = 107 1b/in.2, oy ; = 24,000 1b/in.2, and n = 6.66.
In addition, a yield stress of oy,= 16,000 1b/in.? and

Poisson's ratio, v = 0.33, are used. Figures 53a and 53b
illustrate the deflection profiles and location of the elastic-
plastic boundaries at various stages of the loading. As can be
anticipated, the redistribution of moments that occurs for
elastic strain-hardening behavior, shown in Figs. 53¢ and 53d,
is less pronounced than the redistribution that occurs by as-
suming elastic, ideally-plastic material behavior, as shown in
Figs. 51c¢ and 51d.

Results for the elastic, ideally-plastic behavior of a uni-
formly-loaded clamped circular plate of radius a are shown in

Fig. 54. A yield stress of 0y, = 16,000 1b/in.2 and Poisson's

ratio of 0.24 were used in the analysis. Both idealizations
of Fig. 50 were employed to determine the elastic behavior of
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this structure. The value of the radial moment along the clamped
edge using idealization (a) is 8 percent greater than the corre-
sponding value computed from a continuum analysis, Ref. 51. It
is conjectured that this discrepancy is due in part to the repre-
sentation of the actual circular boundary by a polygon. Some
support for this conjecture is provided by the results using
idealization (b). Since the latter representation yielded some-
what better results for the radial moment (4 percent greater than
the exact value) it was chosen to represent the structure.

A refined representation is also required for the plastic
analysis of this structure. As indicated in Fig. 54b, two sepa-
rate regions of plasticity develop. The first is along the
clamped edge; the second starts at the center of the plate and
propagates in the radial direction. Collapse of the structure is
indicated with the formation of fully plastic sections along the
clamped edge (a "hinge circle") and of a fully plastic section or
hinge at the center of the plate. The present analysis predicts
the formatlon of this collapse mechanism at a load of

= pa /Mb 12.45, which agrees very closely with the value of
= 12.5 predicted from the yield limit analysis of Ref. 50.

Once again the results of the present analysis using load
increments of Ap = 0.125 have been compared with the results
from the layered finite element approach of Ref. 12. In the lat-
ter investigation the load was increased in increments of
Ap = 0.250 and the elements and layers used for the idealization
of the clamped plate totaled 20 and 40, respectively. Results
from both analyses for the deflection profiles, shown in Fig. 54a,
are in agreement for loads of p = 6.5 and p = 9.0. However,
at a load of p = 11.5 there is a substantial difference in the
results, with the present analysis predicting larger displace-
ments than those obtained in the layered approach. Consistent
with the prediction of larger displacements, the present anmalysis
indicates the development of a larger region of plasticity in the
plane and through the depth of the plate than that indicated in
Ref. 12, asvshoWn in Fig. 54b.

The dlfference in results for the deflection profile at
p=11.5 is disturbing, in view of the excellent agreement ob-~
tained with the layered finite element amalysis in the case of
the simply supported plate. A possible explanation for this dif-
ference may be the fact that the deflections increase rapidly as
the load approaches the collapse value for the structure. Thus
at a load of p‘— 11.5, which represents 92 percent of the
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theoretical collapse load; the deflections become arbitrarily
large and a comparison of values of displacements at this load
may be of no significance.

The redistribution of moments in the circumferential and
radial directions is shown in Figs. 54c and 54d. Comparison
with Ref. 12 is gocd, with the exception of the circumferential
moment distribution at a lecad of p = 11.5. A maximum difference
of results appears along the clamped edge, r = a. At this point
the value of circumferential moment, as given by Ref. 12, is
equal to the fully plastic moment Mgy. This value for My 1is,

however, questicnable. From Fig. 54d, the same analysis appears
to predict a value of the radial moment along the clamped edge
greater (in absolute magnitude) than the fully plastic moment.
Since Mg and M, are the only components of moment along the
clamped edge, the condition predicted by Ref. 12, viz., [Mg| = M,
and |M.| > My, is inadmissible for a perfectly plastic material
obeying the von Mises yield condition.

Results for the uniformly-loaded clamped plate assuming
elastic, strain~hardening material behavior are shown in Fig. 55.
The Ramberg-Osgood parameters are identical to those used for the
simply supported plate of Fig. 53. Comparison of results with
the layered finite element approach of Ref. 13 is favorable for
most of the lcad range except for the deflection profile at a
load of p = 560 1b/in.2, Once again, the results for this
structure from the present analysis consistently predict larger
displacements in the plastic range than those given. in Ref. 13,
The redistribution of moments shown in Figs. 55¢ and 554 is
less pronounced for the strain-~hardening behavior than for the
ideally-plastic materials.

Figure 56 illustrates the results for the elastic, ideally-
plastic behavior of a uniformly-loaded annular plate, simply
supported along both the immer and outer edges. The ratio of the
inner to outer radius is 0.375. The unshaded triangles of
idealization (b) (Fig. 50) are used to represent a quadrant of
the structure. Values for the yield stress, Young's modulus, and
Poisson's ratio are identical to those used for the simply sup-
ported plate of Fig. 51.

The value of the collapse load obtained from the present
analysis is p = paZ/Mb = 28.1. The collapse loads for annular
plates with various ratios of inner to outer radius are given in
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Fig. 4.5 of Ref. 52. These loads were obtained from a limit
analysis by using the Tresca yield condition. For a ratio of

b/a = 0.375, the value of the collapse load as determined from
Fig. 4.5 is p = 25.2. The associated collapse pattern of the
limit analysis, consistent with the Tresca yield surface, is rep-
resented by two concentric "hinge circles." For b/a = 0.375
these hinge circles are closely spaced, and from Fig. 4.5 of

Ref. 52 are located at r/a = 0.625 and 0.670. Collapse occurs
in the present analysis with the formation of one hinge circle
located along r/a = 0.625.

The deflection profiles, propagation of the elastic-plastic
boundaries, and distribution of circumferential and radial moment
are plotted in Figs. 56b to 56d for three values of load. The
load paz/Mo = 16.3 represents the maximum elastic load for this
plate.

Triangular plate — bending. -— The plastic bending analysis
has also been used to obtain results for the elastic, ideally-
plastic behavior of a uniformly-loaded equilateral triangular
plate simply supported along the edges. The idealization and
dimensions of the plate are shown in Fig. 57a. Material proper-
ties are the same as those chosen for the ideally-plastic simply
supported circular plate of Fig. 51. An analytical solution for
the elastic deflections is given in Ref. 51. Excellent agreement
with these results was obtained at the maximum elastic load

p = pH2/6M, = 4.65, as shown in Fig. 57c.

The collapse pattern for the triangular plate is indicated
by the shaded region of Fig. 57a. The value of the load at which
this collapse mechanism forms is p = 10.06. The corresponding
value of the collapse load obtained by a limit analysis is
p = 10.39. The limit analysis procedure used to obtain the lat-
ter value of the collapse load follows that outlined in Ref. 46.
The von Mises yield condition was used in conjunction with an
assumed collapse pattern formed along the medians of the triangle.
The propagation of the elastic-plastic boundary through the thick-
ness along the median y = 0 is shown for three values of load
in Fig. 57b. Deflection profiles and distributions of moments
M, and acting along the medians are plotted for loads of

p=4.65 and p = 9.31 in Figs. 57c¢ to 57e, respectively.

The plastic analysis procedure outlined in this section has
also been applied to structures under combined bending and
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membrane loading. As stated above, the cases considered are lim-
ited to those for which a constant membrane load is applied to
the structure. The magnitude of the applied membrane load is re-
stricted to values less than that necessary to initiate plastic
deformation. The lateral load necessary to cause initial yield-
ing is then applied and additional lateral loads are applied in
finite increments while the membrane load is held constant.

Simply supported rectangular plates — combined loading. ——
Curves of lateral load versus center deflection of a simply sup-
ported square plate under combined loading are shown in Fig. 58a
for elastic, ideally=-plastic material behavior. The magnitude
and sense of the applied membrane load is indicated by o, the
ratio of the applied membrane load to the buckling load, Ngpit
(o 1is positive for compressive membrane load and is negative for
tensile membrane load). For positive values of o the lateral
load was incremented to values that resulted in the failure of
the structure. This failure, indicated by the near vertical
slope of the load-deflection curves is associated with plastic
buckling rather than with the formation of a collapse mechanism.
Results for applied tensile membrane loads and pure bending
(0 = 0) are also shown in Fig. 58a.

Load versus central deflection curves for the simply sup-
ported square plate under combined loading are shown in Figs. 58b
and 58c for elastic, strain-hardening behavior, and are compared
with the curves obtained for elastic, ideally-plastic behavior.
The Ramberg-0Osgood strain-hardening parameters are:

E = 107 1b/in.2, oy y = 35,400 1b/in.2, and n = 8.5. In addi-

tion a yield stress of o, = 30,000 1b/in.2 and Poisson's

ratio, Vv = 0.3, are used. Initial yielding occurs at a lower
value of applied lateral load for strain-hardening behavior than
for ideally-plastic behavior, as indicated in Figs. 58b and 58c¢c.
For compressive membrane loading, Fig. 58b, this earlier initial
yielding for strain-hardening behavior results in an earlier
failure of the structure than that associated with ideally-
plastic behavior.

The lateral load-carrying capacities of the simply supported
square plate subjected to various magnitudes of uniform membrane
load in one direction are shown in Fig. 59. The magnitudes of
the applied membrane loads range from -1 < a < 1. For tensile

membrane loads and for the case of pure bezdiﬁg the value of the
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lateral collapse load, p = pa2/6Mb, is that value of load at

which a collapse mechanism is formed. For compressive membrane
loads, as previously stated, the value of the collapse load is
determined from load-deflection behavior. The smooth variation
of the value of the lateral load-carrying capacity in transition
from compressive to tensile membrane loading offers some verifi-
cation that the choice of an 80 percent criterion is a reasonable
one.

The lateral load-carrying capacities of simply supported
rectangular plates under combined loading are shown in Fig. 60.
Results are shown for tensile and compressive membrane loads of
o= -3 and a = %, respectively. In addition, the case of pure

bending, previously shown in Fig. 44a, is repeated in Fig. 60.

Results are shown in Fig. 61 for a simply supported square
plate subjected to a uniform lateral load and an in-plane shear
load. Load versus central deflection is shown in Fig. 6la. The
value of the load at which collapse occurs is p==pa2/6M0==0.518g
The idealization, consisting of a grid of 8 x 8 square ele-
ments, and the yield sequence are shown in Fig. 61b. This figure
shows that initial yielding occurs at two opposite cormners of the
plate and subsequently develops along the diagonal joining these
corners. The propagation of the elastic-plastic boundary through
the thickness is illustrated in Fig. 6lc.

Circular plates — combined loading. — Lateral load versus

center deflection curves for simply supported circular plates
subjected to various combinations of uniform lateral and in-plane
radial loads are presented in Fig. 62a. Results for tensile and
compressive membrane radial loads equal in absclute magnitude to
one~third of the elastic buckling load (a = #1) are compared
with results for the case of pure bending (o = 0), assuming
elastic, ideally-plastic material behavior. Also shown in this
figure is a load-deflection curve for the case of elastic, strain-
hardening material behavior, with the compressive locad equal to
30 percent of the elastic buckling load. The ideally-plastic and
strain-hardening parameters chosen to describe the mechanical
properties are identical to those used for the cases shown in
Figs. 51 and 53. The idealization shown in Fig. 50a was used to
obtain the results shown in Fig. 62.
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An apparent distinction between the behavior of the circular
and rectangular plates under combined loadings, as considered
here, is that in the former there is a more pronounced asymmetry
in the development of stresses, strains, and plastic regions with
respect to the middle surface. For the rectangular plates of
Figs. 58 through 60, because of the material and geometric prop-
erties chosen, the stresses at initial yield attributable to the
membrane loads are less than 3 percent cof the total value. The
predominant effect of the membrane load therefore is to stiffen
(or soften) the structure. For the circular plates of Fig. 62,
on the other hand, because of the material and geometric proper-
ties used, almost 75 percent of the total value of maximum elas-
tic stress is due to the membrane behavior. Thus, for the cir-
cular plates, the effect of the membrane loads on both the stiff-
ness and the stress distribution has a significant influence on
the value of the lateral load at which initial yielding occurs.
This is evident in Fig. 62a where the circular plate loaded
radially in tension (and consequently stiffer) yields at a con-
siderably lower value of lateral load than the same plate sub-
jected to pure bending.

Failure of the ideally-plastic circular plate subjected to a
compressive radial membrane load occurs as a plastic buckling
type of phenomenon at a value of the lateral load 2.6 times the
maximum elastic load. The corresponding plate exhibiting strain-
hardening behavior experiences failure of a plastic buckling type
at a lateral load 6.61 times the maximum elastic load. The
plate subjected to the radial tensile loading was not loaded to
failure.

The growth of the plastic regions for the cases involving
a = *+ are shown in Figs. 62b and 62c¢c, respectively. The ex~
tent of these regions is seen to be similar for the case,
p=1.37, a =+3, and the case, p = 7.91, a = =1, Collapse is
imminent in the former case but not in the latter.

The final problem considered is that of an annular plate
clamped along the outer edge and free along the inner edge. The
inner to outer radius ratio is 0.375 and the thickness is
0.5 inch. Results for the plate subjected to a uniformly-dis-
tributed lateral load acting alone and also in combination with a
uniform compressive radial load equal to 25 percent of the elas-
tic buckling load are presented in Fig. 63.. Elastic, ideally~
plastic material behavior is assumed, with the mechanical proper-
ties chosen as follows: a yield stress of 30,000 psi, Young's
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modulus of 107 psi, and Poisson's ratio of 0.3. Curves of
load versus the deflection along the inner edge are shown for the
two cases in Fig. 63a. The extent of the plastic regions at
various stages of loading are presented in Fig. 63b for bending
alone and Fig. 63c¢c for the combined loading case. For the lat-
ter case two plastic regions appear initially, one emanating from
the upper surface at the free edge and the second originating at
the lower surface along the clamped edge. Although the region at
the free edge is the first to appear as a result of the stress
concentration along the hole boundary, the plastic zones along
the clamped edge become more extensive as the lateral bending
load increases.

Square plate subjected to cyclic loading. — To demonstrate

application of the cyclic loading procedure, as outlined for the
plastic bending analysis of this section, this procedure has been
applied to a simply supported square plate exhibiting strain-
hardening material properties. The Ramberg-Osgood parameters for
this problem are the same as those used for the plate of Fig. 42.
A cyclic load versus center displacement curve is shown in

Fig. 64a for a load range of p = t1.67 (p = pa?/6M* where M¥*
is the yield moment, M* = %ootz)g Since there are no available
experimental data or previous analytical results for this struc-
ture for unloading and reversed loading, the computed results
could not be verified. However, this curve clearly indicates the
effects of cyclic plastic deformation. The initial yield load in
tension is p = 0.75; reversed yielding begins at p = 0.16,
prior to the removal of all the positive load; and subsequent
yielding commences at p = =0.16, prior to the removal of all
the negative load. Because of the presence of residual stresses
and strains and the Bauschinger effect at the end of the first
half-cycle, the magnitude of the center displacement at p = =1.67
is greater than that at p = 1.67.

Deflection profiles along y = 0 are shown in Fig. 64b.
The profiles are plotted at the maximum elastic load, the maximum
and minimum loads, and the residual displacements upon unloading
from p = *1.67 are also presented.

The distribution of normal stress components o0y and o©

at the surface along y = 0 are shown in Figs. 64c and 64d,
respectively, and the shear stress distributions at the surface
along y = fa are shown in Fig. 64e.
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5. COMBINED MATERIAL AND GEOMETRIC NONLINEARITY

In the preceding sections, the treatment of elastic=plastic
bending of beams and plates has been based on the assumption of
zero or constant applied membrane forces. The methods developed
are, consequently, applicable only in the case of relatively
small deflections, since it is well known that the membrane force
generated by the bending of plates into nondevelopable surfaces
is significant even when the deflection is only of the same order
as the thickness of the plate (Ref. 51). The same effect is en-
countered in the bending of restrained beams.

It is desirable, under these circumstances, that a general
method of analysis of great power (such as the finite-element
method) should be extended to include the treatment of small
strains and large deflections, alone or in combination with plas-
tic behavior. Several methods have been developed within the
framework of the finite-element approach to account for geometri-
cally nonlinear behavior. These methods are generally classified
as incremental, iterative, direct search technique, etc.

In the present report, we are concerned with geometric non-
linearity occurring in combination with plastic deformation.
Consequently, a primary consideration in choosing a method for
the analysis of geometric nonlinearity from among the several
currently available is the ease with which it can be combined
with methods of plastic analysis. For this reason, our approach
is based upon a linearized incremental formulation, i.e., one in
which the nonlinear analysis is reduced to the solution of a
sequence of linear incremental equations. In Refs. 4, 15, 45,
53, and 54 this approach was used to solve problems involving
geometric nonlinearity. Since the plasticity relations are them-
selves incremental, and the methods developed for the treatment
of plastic effects depend upon a revision of the governing matrix
equation in each loading step, the modifications necessary to in=-
corporate "large deflection" terms are minimal.

A limitation of the incremental procedure, however, is the
necessity of taking relatively small increments if the solution
obtained is to converge adequately to the "exact" solution of the
nonlinear problem. This can be costly in terms of computer time,
since the inclusion of geometric nonlinearity involves more ex~-
tensive revisions at each loading step than does the treatment
of plasticity. This limitation can be eased somewhat by using
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larger steps in conjunction with an iterative technique. The
iteration need not be introduced immediately but may be postponed
until the nonlinearity becomes sufficiently pronounced to require
it.

Martin (Ref. 45) discusses an incremental numerical method,
based on the direct stiffness approach, that is generally appli-
cable for the treatment of problems involving geometric nonlin-
earity. This procedure approximates the nonlinear behavior by a
sequence of linear steps. Either loading or displacement may be
applied incrementally. This procedure requires the introduction
of the initial stress stiffness matrix, and additionally the up-
dating of the geometry at the end of each incremental loading
step. These considerations and the introduction of the initial
strain stiffness matrix represent the basic modification for the
development of an incremental procedure to account for both types
of nonlinearity.

Thus, the method of solution of the general geometrically
nonlinear problem discussed here involves the solution of ‘a
sequence of "beam-columm' type problems, in which values of the
membrane stress resultants and the geometry of the deformed struc=
ture are updated in each increment of loading. For sufficiently
small loading increments, the increments of rotation in any
finite element will be small when measured with respect to a
local coordinate system which translates and rotates with the
element in successive loading steps (but is assumed to remain
fixed within any one loading step). Consequently, squares and
products of the increments of rotation may be neglected in com~ .
puting increments of membrane strain. Furthermore, with respect
to this local coordinate system and within individual loading in-~
crements the in-plane problem in each element, for initially flat
structures, is uncoupled from the lateral problem, as indicated

in Eq. (58), where the effective plastic load vector is given in
Eq. (57).

Because of the presence of geometric nonlinearity, the en-
tire element stiffness matrix [ke] in Eq. (21) must be reformed
in each loading step, with current stress levels and geometry
being used. In the discussion of the development of the elastic
stiffness matrix, it was mentioned that the only component
matrices required are the conventional stiffness matrices (those
not dependent upon the presence of stress) and the initial stress
stiffness matrix. The latter matrix accounts for the change in
bending stiffness due to the presence of membrane leocads. In the
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development of the initial stress stiffness matrix, the membrane

stresses taken into account are those present at the beginning of
the loading step, any further changes in these stresses occurring
during the loading step being neglected in that develcpment.

This constitutes the linearization of the procedure during an in-
crement of loading.

Some investigators (see Refs. 55-57) have indicated the need
for an additional matrix, termed "the initial displacement"
matrix, for the treatment of geometric nonlinearity. Because the
current analysis utilizes a "moving" local coordinate system,
this additional stiffness matrix is not required. The expression

for Ael as used here for a beam element is given as

2 2
T d@u) 1 /d(aw) d- (Aw)
et = T+ 5 (5500) -2 2 (66)

where Au and Aw represent the increments in the axial and
lateral displacements of the neutral axis of the beam. The usual
Bernoulli~Euler kinematic beam theory assumptions were made to
obtain Eq. (66). The first term on the right side of the above
equation represents the extension of the centerline of the beam
resulting from axial loads; the second term is the contribution
to the extensional strain due to lateral deflection (the rotation
term) ; and the last term is the conventional bending strain term
arising from the condition that normals to the neutral axis
should, after deformation, remain straight and normal to the cen-
terline and unextended.

Margal's expression for the membrane component of total
strain is given as

Tyl (éﬂ)z B 67)

¢ = 5 + ox
Now,
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e +dhe = T5o (T )

(68)
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Subtracting Eq. (67) from Eq. (68) we get

pe® = 200) 4 1 (S(AW) )T 4 (g (A (69)

The increments of the membrane components of total strain in

Eqs. (66) and (69) differ only by the last term. This term leads
to the initial displacement matrix. Since, in the method used
here, Aw 1is measured with respect to a local coordinate system
that rotates with the element, ow/0x, the slope at the begin-
ning of the load increment is necessarily zero. Thus the initial
displacement matrix is zero. If the datum were the original con-
figuration, then the initial displacement matrix would be needed
and the value of 0w/dx used would be the total value of the
slope calculated at the end of the preceding step.

Equation (58) applies to an individual element with dis-
placements taken with respect to the local coordinate system. To
obtain the over-all response of the structure, the contribution
of each element must be transformed into a global system and then
assembled to obtain the over-all load-deflection relationship.

Toward this end, we may write, for an individual element,
JAdb} = [T] JAdo} (70)
1 'Y 1 g

where [T] is an orthogonal transformation matrix relating the
generalized incremental nodal displacements referred to the local
coordinate axes to those referred to the global axes. The sub-

scripts £ and g refer to local and global coordinate systems,
respectively. We can also write

{A%}g = [T]’ {Apo}ﬂ (71)

because of the orthogonality of the transformation. The result-
ing global equation for an individual element is

1O M, S AR L R b
1 @1+ e ® g {Ado}g - {Ag}g + (11 {oa} (72)
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where, as discussed above, [k(o)] and [k(l)] are calculated
on the basis of the geometry and membrane stresses existing at
the start of the loading step. The vector of increments in the
fictitious forces, {Aq}, 1is calculated in the manner discussed
above in connection with plastic analysis. An increment of load
is then applied and the corresponding displacement increments

calculated from the matrix equation for the whole structure. The

displacements are then transformed back to local coordinate sys-
tems appropriate to the beginning of the loading step. New in-
ternal forces are calculated, and total stresses, strains, and
displacements are obtained by summing incremental values. The
geometry is then updated and new local coordinate systems are
formed. This process is repeated until the maximum specified
load level is reached or the structure fails.

A detailed discussion of coordinate transformations for a
beam element and a triangular bending element is presented in
Appendix L.

Results for Geometric Nonlinearity

To illustrate the procedure for geometric nonlinearity, a
simply supported restrained beam subjected to a uniform vertical
load is considered. A plot of the central deflection versus
lateral load for this beam is shown in Fig. 65a. The exact re-
sults were obtained from Ref. 51. As may be seen in Fig. 65a,
agreement between the present and exact results for the center
displacement is quite good. The length of the beam is 60 in.,
the moment of inertia is 0.1 in,4, and the area of the rec~
tangular cross section is 1.2 in.2. To take advantage of sym=
metry, 6 elements were used to represent half the structure. A
plot of internal axial force versus total load for the same beam
is given in Fig. 65b. Once again, agreement with the exact re-
sults of Ref. 51 is excellent. It should be noted that in beam
problems, the membrane force generated is tensile and tends to
stiffen the structure.

Because of the presence of compressive axial forces in
arches, elastic instability can occur when the loading reaches a
critical value. To determine the value of the critical load ac-
curately and establish a basis for its prediction, the determi-
nant of the over=-all stiffness matrix and the eigenvalues and
eigenvectors are calculated by means of a procedure developed in
Ref. 58.
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To illustrate the procedure, several circular arches were
analyzed and the results compared with those of other authors.
Geometric imperfections and eccentric loadings were introduced in
several cases to study their influence on the behavior of the
arches. Straight beam elements were used in all the following
examples.

Figure 66 is a plot of load versus central deflection for a
simply supported shallow arch with a symmetric buckling pattern.
The results are compared with those of Ref. 4, where a finite-
element approach was also used. There is a 6 percent difference
between the buckling loads obtained in the two analyses. Also
plotted is the scaled determinant versus load. The value of this
determinant crosses zero at the buckling load.

Figure 67 is another plot of load versus central deflection.
Here the simply supported arch is deep and the governing buckling
criterion is the antisymmetric or transitional one. The case for
which the concentrated load is applied with eccentricities of two
and five inches is also shown. These latter results are compared
with those of Ref. 4. Also included are plots of the scaled de-
terminant versus load. For the symmetrically applied load
(e = 0), we get transitional or "bifurcation" buckling. For the
eccentrically applied loads, we get "top of the knee' buckling.
It is also interesting to note the difference in behavior of the
determinant for these cases. For zero-eccentricity loading, the
determinant approaches zero, with a near vertical slope; while
for "top of the knee" buckling, it crosses the zero axis at a
pronounced angle, an effect similar to the results shown in
Fig. 66 for symmetric "top of the knee" buckling.

Figure 68 is similar to the two previous figures. Here,
however, a clamped uniformly loaded antisymmetrically buckling
arch is considered. The results for zero imperfections are com~
pared with the exact results of Ref. 59 and with the results of
Ref. 60, where a finite-element approach was used in combination
with an iterative procedure. Excellent agreement with both is
achieved. For this arch antisymmetric imperfections in shape
were also introduced in the form of the buckling shape obtained
from the eigenvector analysis. The maximum magnitude of the de-
flection mode shapes introduced as imperfections was of the order
of one~tenth of an inch.

With zero imperfection, bifurcation type buckling cccurs.
However, when imperfections are introduced the lowest eigenvalue
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never reaches unity nor does the determinant reach zero. Thus
there is no clearly defined buckling load, and, in fact, the
lowest eigenvalue decreases after having attained a maximum value
of less than one. At that same load, the determinant begins in-
creasing after having decreased toward zero. Lt is this load
that is indicated in the figure for the two cases where imperfec-
tions were introduced.

Figure 6% shows the same arch as Fig. 67, but with a uniform
load applied. Geometric imperfections were also introduced here.
The behavior of this simply supported arch is found to be similar
to that of the clamped arch of Fig. 68.

Load versus central deflection curves for a clamped circular
arch subjected to a central concentrated load are shown in Fig. 70.
Results from the present analysis are compared with those ob-
tained in Refs. 61 and 62. The results indicate that although
Margal (Ref. 56) proposes the need for an additional matrix (the
"initial displacement matrix") in the analysis of problems in-
volving geometric nonlinearity, the technique of the present
analysis does not require it. The results obtained here without
the use of the initial displacement matrix compare quite well
with the theoretical results of Ref. 62 and with the experimental
results of Ref., 61. Further, the scatter in Margal's results ob-
tained by using successively finer idealizations was not ex-
hibited in the present analysis. Although only the results for
16 elements are shown here, the buckling load obtained by using
8 elements is less than 2 percent higher than that obtained by
using 16. '

Results — Combined Material and Geometric Nonlinearity

In the preceding applications it was assumed that the rela-
tionship between stress and strain is linear. Although this is a
reasonable representation of the actual material behavior for
many problems, the specimen's proportional limit is quite often
exceeded. Plasticity effects must then be included to gain an
accurate insight into the physical response of the structure to
additional loading. Furthermore, such important phenomena as
plastic collapse and plastic buckling cannot be predicted unless
this behavior is properly accounted for.

The restrained beam was chosen to illustrate the procedure
for combined geometric and material nonlinearity. A yield stress
of 30,000 psi was assumed, and a uniform vertical load applied.
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Load versus central deflection curves obtained for purely
elastic and for elastic, ideally-plastic material behavior are
shown in Fig. 7la. The curves for plastic behavior are presented
for idealizations involving 6, 12, and 24 elements for one-half
of the beam. Differences in the results for these idealizationmns
appear only after the end sections at the supports become fully
plastic. Beyond the value of load at which this occurs, deflec~-
tions increase quite rapidly and collapse occurs shortly there-
after. The counterbalancing effect of geometric and material
nonlinearity is vividly depicted in Fig. 7la, where it is seen
that there is a region of the load~deflection curve that is very
nearly linear.

Figure 71b illustrates the growth of the plastic regions of
the restrained beam. The dotted line at P = 10.74 kips indi-
cates a jump in the representation of the plastic region when the
end section becomes fully plastic.

The load-deflection history of the shallow circular arch
subjected to a concentrated load, previously considered in
Fig. 66, is again shown in Fig. 72. Load versus center deflec-
tion curves obtained by assuming elastic, ideally-plastic mate-
rial behavior are shown for two values of yield stress. The
onset of collapse for this structure is appreciably hastened by
the introduction of plasticity. This is attributable to the re-
duction of the structure's stiffness resulting from the effects
of yielding. For this structure, the effects of both types of
nonlinearity are complementary. As in the case of the uniformly
loaded beam subjected to a constant axial compressive load, the
development of a fully plastic cross section is not necessary for
collapse to take place, and failure occurs as a plastic buckling
phenomenon.

Figure 73a illustrates the symmetrically buckling arch under
a uniform load. The load-deflection curves of the elastic arch
and of an elastic, ideally-plastic arch with yield stress of
30,000 psi are shown. Once again, the buckling load is con-
siderably reduced by the complementary effects of geometric and
physical nonlinearity. The onset of buckling is appreciably
hastened when plasticity is included, a result also obtained in
Ref. 63, where strain-hardening behavior was considered. Fig-
ure 73b indicates the rapid growth of the plastic regions in the
arch as the loading is increased to the failure load. Figure 74
shows the arch of Fig. 73a, but now with clamped ends. This
arch does not buckle elastically but deflects continuously with
increasing load into the inverted position. Plasticity acceler-
ates this passage through the zero rise position of the center.
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6. CONCLUDING REMARKS

The methodology resulting from the current investigation is
capable of treating the nonlinear response of a broad spectrum of
structures under a variety of loading and boundary conditions.
There are two general types of problems for which the treatment
of plastic effects has its greatest significance. The first is
concerned with the determination of failure loads and failure
mechanisms of large structural systems, e.g., an aircraft wing,
and assessing the survivability of these systems when they are
subjected to some unexpectedly large loading. To take full ad-
vantage of the present nonlinear methods for use in this type of
analysis it is necessary that they be made available as practical
tools for the structural designer and analyst. Much remains to
be done, however, in the refinement of computational techniques
and the organization of large generalized programs to permit such
analysis on a convenient basis and at a cost that is not prohibi-
tive. This is particularly true of the treatment of plasticity
in combination with geometric nonlinearity.

The second type of analysis for which the treatment of
plastic effects is most significant is that of localized regions
of a larger structural system in which yielding may occur as a
result of stress concentration. This might apply, for example,
to the region surrounding a fastener or cutout, or at junctures
between structural components. A failure in such a localized re-
gion may result in the structural inadequacy of a larger over-all
system. The present methods are particularly well suited to such
analysis. However, for an accurate description of the plastic
behavior of a structural component the present methods, as de-
veloped, require a more thorough understanding of inelastic mate-
rial behavior. The principal area in which deficiencies still
remain is that of constitutive relations for material properties.
Although a basic understanding of the macroscopic behavior of
simple structures in the plastic range has been attained by the
application of available plasticity theories, these theories are
still rather crude and limited in their applicability. In addi-
tion to a need for the refinement of theories of time-independent
plasticity for initially isotropic materials subjected to mono-
tonic loading and small strains, there is a need for the further
development of plasticity theories to take proper account of ini-
tial anisotropy, time-dependence, cyclic loading including stress
reversals into the plastic range, and large strains.
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While these deficiencies inevitably raise questions concern-
ing the accuracy of results obtained by finite-element plastic
analysis, we do not believe that this should inhibit the develop-
ment of such methods and associated computer programs. As im~
proved constitutive relations become available, it should be
possible to incorporate them readily into existing methods and

programs.
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APPENDIX A

PLASTICITY RELATIONS

A discussion of some of the plasticity relations used in
developing the methods presented in this report must begin by
specifying the initial yield condition that defines the elastic
limit of the material. 1In all cases of multiaxial stress, the
von Mises yield function, which describes a smooth surface in
stress space and can be represented by a simple mathematical
function, is chosen as the initial yield condition. With con-
sideration limited to plane stress situations (Ozi Tgg = TYZ==O),
the von Mises yield function is represented as an ellipsoid in
stress space, given by

£(o,.) = 02 - o o+ 02 + 312 - 02
ij X X'y y Xy o

i
o

(A.1)

where 05 1is the yield stress in tension.

Describing the plastic behavior of a material requires addi-
tional information in the form of a constitutive relation between
increments of plastic strain on the one hand and stress and
stress increments on the other. This constitutive relation,
termed the flow rule, is based on Drucker's postulate for work-
hardening materials (Ref. 64). (For a discussion of this postu-
late and the conditions necessary for its satisfaction, see Ap-
pendix A of Ref. 11.) The flow rule, represented in tensor form,
is written here as

ij acij

(A.2)

where deij is the increment of plastic strain; f(oij,qij)
represents the loading function, used to determine subsequent
yielding from some plastic state; @jj 1s a measure of the de-
gree of work hardening; and dA is a positive scalar quantity.

Having selected a yield condition and flow rule, we must now
choose a function that will establish conditions for subsequent
ylelding from a plastic state. Choice of a hardening rule de-
pends on the ease with which it can be applied in the chosen
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method of analysis as well as on its capability of representing
the actual hardening behavior of structural materials. Further-
more, for some cases of interest in this report, the hardening
rule should be capable of treating the Bauschinger effect ex-
hibited during reversed plastic deformation. These requirements,
together with the necessity of maintaining mathematical consis-
tency with the yield function, constitute the criteria for final
choice of a hardening rule. An appraisal of some of the harden-
ing rules available (Ref. 1l) indicates that the kinematic
hardening theory due to Prager (Refs. 21 and 22) and modified by
Ziegler (Ref. 23) satisfies these criteria. The hardening be-
havior postulated in this theory assumes that during plastic
deformation the loading surface translates as a rigid body in
stress space, maintaining the size, shape, and orientation of the
yield surface. As a consequence of assuming a rigid translation
of the loading surface, kinematic hardening theory predicts an
ideal Bauschinger effect for completely reversed loading condi-
tions; i.e., the magnitude of the increase of yield stress in one
direction results in a decrease of yield stress of the same mag-
nitude in the reverse direction.

An ideal Bauschinger effect, as predicted by kinematic
hHardening, can be expected to give, at best, an admittedly sim-
plified approximation of the actual behavior of structural metals
under cyclic loading. Experiments have shown that subsequent
yield surfaces are more complex to describe than as a mere trans-
lation of the original surface. In view of the current state of
the art of plasticity theory, however, the authors believe that
kinematic hardening represents the simplest theory capable of
predicting the essential features of cyclic plastic behavior.

An illustration of kinematic hardening, as applied in con-
junction with the von Mises yield curve in the 03, 09 plane, is
provided in Fig. 75. The yield surface and loading surface are
‘shown in this figure for a shift of the stress state from point 1
to point 2. Denoting the translation of the center of the yield
surface by 043, ‘we may represent the loading function £ in
the form f(cij =vaij); the subsequent yield condition is given
as .

f(o.. ~a,.) =0 . (A.3)

Thus the von Mises yield condition for plane stress can be writ-
ten as follows, to represent the subsequent yield condition:

88



-2 == =2 -2 2
= - + = = R
f(aij,aij) oL qxcy o& + BTXy o 0 (A.4)
where
G, = - a,

The increment of translation of the loading surface dojj,
as given by Ziegler in Ref. 23, is computed at each loading step
and summed to determine the total translation. Ziegler's modifi-
cation of Prager's hardening rule is concerned with the assump-
tions associated with determining the magnitude and direction of’
the increment of translation of the loading surface. Specifi-
cally, it is assumed that daij is directed along the radius
vector comnecting the center of the loading surface to the in-
stantaneous stress state in stress space. The magnitude of dajj
is determined from the condition that the stress state must re-
main on the translated loading surface during plastic deforma-
tion. Additional details associated with determining the trans-
lation of the loading surface are given in Ref. 11,

An expression for the scalar factor dX, appearing in the
flow rule of Eq. (A.2), is given in Refs. 1l and 23 and is re-
written here as follows:

aaf dO..
an= L2285
T ¢ Oof of

o0 d0
m  mn

(A.5)

where ¢ 1is a parameter characterizing the hardening behavior of
the material. A procedure for determining this parameter, dif-
ferent from the one presented in Ref. 11, is discussed below.

Substituting Eqs. (A.4) and (A.5) into Eq. (A.2) yields the
following explicit expressions for the plastic strain increments:

_ Midcx + Mledcy + MIMBdTXy

D

deX (A.6a)
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2
MZMldoX -+ Médoy + M12M3dTXy

dey = D (A.6Db)
MM do  + M.M.do. + Mdt
P _ 31 x 32y 3 Xy
dy. = (A.6c)
Xy D
where
- 1=
Ml'-cx ch
- = _ 1=
M? Gy 2 %
M3 = 3TXY
and.

-2(5'52 - 850 + 50° + 36'{2)
Xy y Xy

(w)
i

X

If we replace dojj; by Acjj; and dejj; by Aejj,
Eqs. (A.6) can be written in a linear incremental matrix form
relating plastic strain and stress increment, as,

2

Aex Ml MlMZ M1M3 Aak

re V=Ll wn M MM AG (A.7)
v p | Yoy 9 M3 y [ - W
P

MYy M M, M§ | Var,

Thus the above linear incremental relationship can be compactly
written as

{Ae} = [c] {Ao}» : (A.8)
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Equations (A.5) through (A.8) pertain to elastic, strain-
hardening behavior. The treatment of elastic, ideally-plastic
material behavior requires implementing the "tangency condition"
associated with such behavior, i.e., that the incremental stress
vector be tangent to the yield surface during ideally-plastic
flow. This condition provides a linear relation among the vari-
ous components of stress increment. Lt can be expressed as fol-
lows:

ij

If we set dojj = Aoj; and-express Aoy in terms of Aoy and
ATygys Eq. (A.9) can be represented in matrix form as

= -1 -1 =
So do,, = (qx 2 cy)dcx + (oy 9 ox)doy + 3Txydey 0 (A.9)

Aok 0 -y --m.2 Aoi
Ao = 0 "1 0 Ao (A.10)
Y y
AT 0 0 1 AT
Xy L | Xy
where
- -1 1
ml - <0y 2 GX) / (GX 2 Gy>

The coefficient matrix of Eq. (A.10) is represented by the matrix

[E]. Thus the above linear relationship among the components of
stress increment can be written as

{AO} = [E] JAO} (A.11)
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The treatment of elastic, ideally-plastic material behavior
also requires implementing the normality condition on the strain
increment vector, thus providing a linear relation among the
various components of plastic strain increments. This condition
is represented by the flow rule of Eq. (A.2) and can be expressed
as follows:

de de ¥y
dh = - = e = : (A.12)

If we set deij = Aeij, Eq. (A.12) leads to the incremental

matrix relation that exists among the components of plastic
strain increment. If we express Aey and Any in terms of

A€y, this matrix relation is given by

Ae [ 1 0 0 | ae
X X
Ae = m 0 0 Ac . A.13
§y£ 1 y ( )
P P
Avxy | my 0 O | Avxy

The coefficient matrix of Eq. (A.13) is represented by the matrix

[E]. Thus, the above relationship may be represented in the fol-
lowing form,

{Ae} = [E] {Ae} . (A.14)

It is apparent from Eqs. (A.9) and (A.12) that only two of
the three components of stress increment and only one of the
three components of plastic strain increment are required to ob-
tain the remaining components. Thus only three of the six quan-
tities are independent variables. The increments of stress and
plastic strain can now be written in terms of a vector, {Aw},
representing these independent quantities, arbitrarily chosen as
NAex, Aoy, and ATXY:
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{Aw} = (Ao . (A.15)

Because of the structure of the matrices [E] and [E],
Eqs. (A.11) and (A.14) may now be rewritten in the following
form,

JAO}- = [E] an)} (A.16)

and

{Ae} = [E] {Aw} . A.17)

The strain-displacement relations that are a necessary in-
gredient in the analysis are based on kinematic considerations
and are independent of material properties. However, since they
involve total strain (elastic plus plastic), the solution proce-
dure requires an incremental relation between stress and total
strain.

For both elastic, strain-hardening and elastic, ideally-
plastic material behavior, the increment in total strain at a
node can be written as the sum of an elastic and a plastic com-
ponent, represented as {Ae®} and {Ae}, respectively, as fol-
lows,

{AeT} = {Aee} + {Ae} . (A.18)

The increment in elastic strain is related to the stress incre-
ment {Ao} by means of Hooke's law. For plane stress this rela-
tion may be written as
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Aee 1 - 0 AO
3 X
‘éAee R Y 1 0 AG . (A.19)
Py E y

AWXY — 0 0 2(L + v) - ATxy

If we represent Eq. (A.19) as

{Aee} = ]t {Ad} (A.20)

then Eq. (A.18) may be written in the form

{AeT} - [E]_l{Ac} + {Ae} : (A.21)

For an elastic, strain-hardening material we make use of the
linear incremental relation between plastic strain and stress,
i.e., Eq. (A.8), to obtain the incremental relation between stress
and total strain given in the following equation:

{Ao}

R fAeT} (A.22)

1

where

-1

[R] = [E] = + [C]

It should be noted that there is no unique stress increment
corresponding to a given plastic strain increment vector. There-
fore the matrix [C] 1is singular. However, the matrix [R],
defined in Eq. (A.22) will possess an inverse, thereby providing
the necessary coefficients relating the stress increment to the
increment of total strain.

For an elastic, ideally-plastic material we require a rela-
tion between the vector {Aw} and the increment of total strain.
This is obtained by substituting Eqs. (A.16) and (A.l7) into
Eq. (A.21) to yield
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{Aw} = [E*]wl {AeT} (A.23)

where

E] = (E]"N(E] + [E] .

A Multiaxial-Hardening Coefficient

The incremental constitutive relation between plastic
strains and stresses, shown in matrix form in Eq. (A.7), requires
knowledge of the inelastic behavior of the material in a state of
multiaxial stress. As stated above, for the case of kinematic
hardening this behavior is characterized by the parameter c,
appearing in Eq. (A.5).

Since sufficient experimental information is lacking on the
hardening behavior of structural materials under multiaxial
stress states, the material properties generally used in inelas-
tic analysis are determined from simple tensile or compressive
tests of samples of the material. If the structure is in a state
of uniaxial stress, the stress-strain relation is identical to
that obtained from tension or compression tests. The hardening
coefficient ¢ can then be taken simply as the slope of the
stress-versus~plastic-strain curve at the current stress level.
In the general case of multiaxial stress with nonlinear strain-
hardening, determining the hardening coefficient is much more
complicated. It can be expected that ¢ will vary not only with
stress level but also with the ratio of various stress components
to one another, i.e., with the location of the stress state on
the loading surface. A procedure to determine the multiaxial
hardening coefficient ¢ in the kinematic hardening law was pre-
sented in Ref. 11. This procedure has two shortcomings; viz.,
the value obtained for ¢ 1is not invariant with respect to a
rotation of the coordinate axes, and hydrostatic stress is not
properly taken into account. An alternative method outlined here
overcomes these shortcomings. This method is based on the
Ramberg-0Osgood representation of a uniaxial stress-strain curve
(Ref. 65); i.e.,

(A.24)
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where n 1is a shape parameter given by

log(17/7)
log(dy ;/9y g5) ~

(A.25)

e 1is the total strain, E is the slope of the linear portion of
the stress=-strain curve, and 9.7 and 0p,85 are the stresses

at which the curve has secant moduli of 0.7 E and 0.85 E, re-
spectively.

We recognize the nonlinear term in Eq. (A.24) as the plastic
strain and use it to determine the inverse of the hardening co-
efficient

n=-1

L _/de\ _ 3n (g
c= (5 - 7E lob 7' (A.26)

where €, the plastic strain, is equal to

;g“ o ln-l
W

The single value of ¢ to be introduced into Eq. (A.5) for
multiaxial stress is computed by assuming that there exists a
Ramberg=0sgood representation relating effective stress to effec-
tive strain, i.e.,

- = = na-1
- o, 3 _a "
e=g+ o7 l“o 7] (A.27a)
where
q(2 5
- _ 2 2 2, Tx
e ~/Qg_(ex tee +el+ (A.27b)
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and

-

o = (02 - o o + 02 + 3T2 ) . (A.27¢c)
X Xy y Xy

The inverse of the hardening coefficient can now be written as

= = n-1
L-(%) -8 =y (4.28)
do 0.7

where €, the plastic component of the effective strain, is
equal to

It should be noted that use of an effective stress-effective
strain relation is usually associated with the isotropic harden-
ing theory of plasticity, in which the various components of
strain increment are determined from an effective strain incre-
ment. In our analysis, however, the components of strain incre-
ment are related to the stress increments through constitutive
relations determined from kinematic hardening theory. The effec~
tive stress-effective strain relation and the definitions of
these quantities, presented in Eqs. (A.27), are used merely to
define the hardening coefficient of Eq. (A.28).

The Ramberg-Osgood parameters E, 09,7, and n used in
Eqs. (A.27) are obtained from a uniaxial stress-strain curve for

the material; therefore initial isotropy of the material is as-
sumed.

It can be seen that this approach takes into account the
fact that the hardening coefficient varies with the location of
the stress point on the loading surface and that it reduces to
the correct value in the special case of a single nonzero stress
component.
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The value of the hardening coefficient given in Eq. (A.28)
applies to loading situations for which the stress state remains
in a fairly localized region on the yield surface. Further gen-
eralization of this equation is necessary to accommodate cases of
elastic unloading and subsequent reloading into the plastic range
in which the stress state shifts to a different region on the
loading surface. This generalization is identical to that asso-~
ciated with the use of the previous hardening coefficient of
Ref. 11. Basically, the assumption is that the shape of the in-
"elastic portion of the stress=-strain curve is the same on re-
versed yielding as on initial yielding. The value of the harden-
ing coefficient is thus the same as that shown in Eq. (A.28),
with 0 now written as

—

o= ((cx -0 )" - (o, - a) CHER

- .2 )
+ (cy ay) + B(Txy axy))

where o is the last computed value of a prior to unloading
and reversed loading in the plastic range.
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APPENDIX B
FORMULATION OF [B] AND [H] MATRICES
This appendix presents a derivation of the [B] and [H]

matrices for the six node (LST) triangle. The derivation makes
use of Eq. (23), written here as

{AD} - k17 {AP} + [k 17HK] {Aeo} (B.1)

where
{AP} is the vector of increments in applied nodal forces;
(K ] is the elastic stiffness matrix for the structure
after proper boundary conditions have been taken
into account;

{AD}  is the nonzero nodal displacement vector;

[E] is the initial strain matrix for the entire struc-
ture; and

{Aeo] is the vector of nodal initial strain increments.

Equation (B.l) is used with the equation for stress increment at-
the ith node written as

{A c}i

[E] {Aze}'
1
(B.2)

= [E] (JAeT} - {Aeo})°

where the elements of the [E] matrix are the usual elastic co-
efficients associated with the stress-strain relations for plane
stress. The vector {Ae®} 1is the average elastic strain incre-
ment at the node. This vector is defined as the average total
strain increment in the elastic range or the average total strain
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increment minus the plastic strain increment in the plastic re-
gion as shown in Eq. (B.2). Average values were used in this
case because the provision of displacement compatibility at nodes
for the LST triangle does not ensure that strains and, therefore,
stresses will be compatible at nodes. Hence, total strain or
stress from each element adjacent to a node must be computed and
then divided by the number of adjacent elements in order to de-
termine the average stress or strain. Average total strain can
be related to the nodal displacements of the entire structure by
means of the matrix [W;] so that

{AETL - [%i] {Adc} . (B.3)

Substitution of Eq. (B.3) into Eq. (B.2) yields the expression
for stress increment in terms of the increments of nodal dis-
placement and plastic strain as follows

{A }i - [E](V,] {Ado} - [E] {Aeo} . (B.4)

Equation (B.4) is then assembled for all nodes at which stress
values are desired, to yield,

{Ac} = [S] {AD} - B, {Aeo} (B.5)

where [S] is the assembled matrix of [E][ﬁi], and [Ey] is a

diagonally partitioned matrix consisting of submatrices [E].
Substitution of Eq. (B.l) into Eq. (B.5) then yields the desired
equation for stress increment,

{Ac} = [B] {AP} + [H] {Aeo} (8.6)

where

[B] = [S][K]™T
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and

- | . =1=.1
[(H) = - | [Eq] - [SIIKITV[K]] .
The corresponding definition for the matrices [A] and [J]
shown in Eq. (24) of Section 2 are obtained from an equation for
total strain increment. Their definitions can be written in
terms of [B] and ([H] as

[A]

]
~
<]

(B.7)

(3] =[E,] ' (H] + [ I ]

[

d

where [Eq] 1 is a diagonally partitioned matrix composed of
submatrices [E]-Ll.

It should be noted that the [K] and [H] (or [J])
matrices are formed in the present analysis as though a plastic -
(initial) strain increment existed at each node. If a node is in
the elastic range, the plastic strain increment at that node is
set equal to zero. In this manner all the necessary matrices
from the elastic analysis are computed only once.
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APPENDIX C

INITIAL STRAIN STIFFNESS MATRIX FOR LST ELEMENT

The stiffness matrix for the six node plane stress (LST)
triangle has been derived in Refs. 29, 30, and 53. This appen-
dix gives the initial strain stiffness matrix for the LST tri-
.angle used in the plasticity analysis of membrane stressed struc~
tures. The derivation of this matrix, given in integral form in
Eq. (10), is based on the definitions of the element geometry and
initial strain assumptions shown in Fig. 2. The integral form is
rewritten here as follows:

] = || W1’ [E (W, Jav (c.1)

\
p

where [ﬁp] represents the assumption made for a linear dis-
tribution of initial strain increment in Eq. (10), and [W] re-
lates nodal displacement to the element total strain.

This matrix is based on a quadratic distribution for the in-
plane displacements and can be written as

010y 2x 0 00000 0 [a]go"l
Wl=10 0 000 0 0 0 1 x 0 2y|l-—-+~--- (c.2)
!
0 01 x 0 2y 01 0y 2x 01Jl0  [a]

where the matrix [a] relates the coefficients of the poly-
nomial form for displacement increments, Eq. (40), to the nodal
displacements, and is written as
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1 0 0 0 0 0
1 x, 0 0 x> 0
J J

1 x y X, ¥ xz y2
k k k'k k k
[a] = 9 (c.3)
1 Xi/ yil Xi,yi/ Xil y-]?-.l
1 X, V. X, 1Y, X?/ Y%/
3 j i3] it Y3
1 Xq 1 Y. R 1Yq, ¢ le YZI
| k k k' Tk k k

and the incremental nodal displacement vector is written as fol-
lows:

{Ado}= R I (C.4)

AVk )

Substituting Eqs. (C.2), (C.3), and (41) into Eq. (C.1) and per-
forming the matrix multiplication yields
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k1= —2— ||| (el +xle;1+ ylc,] + x”(c,]
Y

\Y
p (€.5)

+ 5716, ] + xylc,])av

where the [C;] matrices in Eq. (C.5) are constant matrices of

order (12 x 9). The_integration of Eq. (C.5) yields the follow-
ing final form for [k],

[E] = 2

AhE [
12(1 - v7) l

12[00] + 4[01](xj +x,) + 4[02]yk

2 2 2
+ 2[C4]yk + 2[C3](xj + x.x, +x (C.6)

ik k)
+ [csl(ykgj + zykgk)]

where A 1is the area of the element (x.yk/Z), E is Young's
modulus, and h is the thickness. J

The nonzero elements of the [Ci] (i =0 -5 are given
below.

[Cyl:
2,1 =1 2,4 = v
3,7 =1 8,7 =4
9,1 = 9,4 = 1
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[C

[C
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2,1
2,4
3,7
4,7
5,4
9,2
9,5
10,4

2,1
2,3
2,5
3,7
3,9
4,4
8,7
8,9
9,2
9,4
9,6

12,1

4,7
5,1
5,4
10,1
10,4
11,7

-1/x,
Y .
XJ

o X,
w/ 5

2v
s
5

—Xjk/ZA
l/yk
vxk/ZA
—uxjk/ZA
/'y

/vy
—vxk/ZA

2,2
2,5
3,8
5,1
9,1
9,4
10,1
11,7

2,2
2,4
2,6
3,8
4,1
6,7
8,8
9,1
9,3
2,5
10,7
12,4

4,8
5,2
5,6
10,2
10,5
11,8

1/x.
v o
*3

X
w/ 3

~-v/x.
;XJ
-1/x.
J

~vx,k/2A



(C

where

4,1
4,3
4,5
6,7
6,9
10,8
12,1
12,3
12,5

4,1
4,4
4,7
4,9
5,2
5,4
5,6
6,8

10,2

10,4

10,6

10,8

11,8

12,1

12,4

v is Poisson's ratio,

4,2
b,4
4,6
6,8

10,7

10,9

12,2

12,4

12.6

4,2
4,5
4,8
5,1
5,3
5,5
6,7

10,1

10,3

10,5

10,7

11,7

11,9

12,2

12,5
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APPENDIX D

INITIAL STRAIN STIFFNESS MATRICES FOR BEAM FINITE ELEMENT

The initial strain stiffness matrices for a beam element in
bending alone and for combined bending and membrane loading are
derived from the assumptions shown in Figs. 32 and 33 and are
given in integral form in Eq. (15).

The matrix equation defining the fictitious nodal restoring
forces in terms of the initial strain stiffness matrix for the
pure bending of a beam with a rectangular cross section is

Pz. cl/£ cz/z
1
M c c
i 3 4 €. . .
EL 0i *
=220 ) = [k ] e } (®.1)
Pz. t3 c1/£ cz/ﬁ e 170
J 0j
Mj L C.5 C6
where
— jo—— 2 aancr —
_ (zj Zi) s tz i zi(t + zl)
€1 20 2
9(zs - 2.)°  (Z: - 2.)(27. + t) Z. (£ + 2.)
_ j i/ A i i 2y i
) 20 2 2
(z; - 202 (25 - 2,)(2Z, + t) z, (t +2,)
o = i i i I A i
3 60 12 2
(s - 2.)% (3 - 2.)(2Z, + ©)
_ 75 i, 0 i i
A 10 12
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_ (zj - zi) s (Zj - zi)(Zzi + t)
€5 . 15 12
—— — 2 — — — — —
) 7(zj zi) .\ S(Zj zi)(2%17+ t) ) tz .\ zi(t + Zi) ,
6 20 12 2 ’

where P, and M represent the fictitious restoring force in
the lateral direction and moment, respectively; t 1is the half
thickness of the beam element; and 2z represents the depth of
the elastic-plastic boundary. For this element, all z's are
determined with respect to the median surface. Other quantities
appearing in Eq. (D.l) are defined in Fig. 32.

The corresponding relation for the case of combined bending
and membrane stresses is shown as follows,

] E3 % %* %
P2y kg kg kg Ky
% * * %* U
M; kor Ky Kyg Ky | [egg
P K K K K U
xg 31 32 33 34 03
- EL % % * %
= ) i ) i L (0.2)
Vsz 23 Ry R kg Ry | [0t
%* %* * %* L
" ks ksy  ks3 o kg, | Yepy
P T K
x, | kg 32 33 34 |
where
K= - (23 +
11 = (2 40)(:l (ﬂ/4)c3
¥ 3 9 i
k12 = (92 /40)c1 (2 /4)c2 (E/A)c3
* 3
K, = - (Pla0)e, + (1/4)yeg
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K, = = (98°/40)e, - (U2/4)es - (4/4)eg
K, = (41200, + (BP128)e, + (FPla)e,
Ky, = = (£*/20)e; - (£/26)c,
k;3 = (£4/120)c4 + (z3/24)c5 + (£2/4)c6
K, = - (£*/20)c, - (£/24)e,
K, = - (P8)e, - (34/8)cq
Ky, = = (Bl4)e, = (34%/8)cq
Ky = (FP/8)cy + (357/8)cy,
.k§4 = (Pl8ey + (362/8)ey,
Ky = - (44/300e, = (FP/24)e,
Koy = = (744/40)e; = (50°/24)e, = (1*/4)cq
Ky = = (£4/30)c, - (£/24)cq
Ky, = - (70%/40)c, - (50°/28)eg - (U2/4)e,
and
2

¢ = <E? - =) S

ey = - (- D - D)

c3=~;g(3t";i
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)

k| i
- L =L
cg = (z? -z (t - 2z > ,/’z
L2
cg = 2t2 -+ tz? - z?

g = <E§ - —i>//lﬂ
c10=-z_§_' - 2t

The quantities Py and Py  represent the fictitious re-
» i

storing forces in the axial direction. Here all z's are mea-
sured with respect to the upper surface of the beam. All other
quantities appearing in Eq. (D.2) are defined in Fig. 33.

The initial strain matrix in Eq. (D.2) must be modified for
the treatment of problems in which the membrane strain generated
is sufficiently large to cause the entire cross section of the
beam to go plastic, with strains at both the upper and lower
surface being of the same sign. For these cases there is no
point within the thickness at which the plastic strain is zero.
Consequently, the functional form of the plastic strain distribu-
tion must be modified to account for this.

Choosing

c

1+ (Rj - 1) gzﬁ <%)eg (D.3a)
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retains the assumption of a linear plastic strain distribution
through the thickness, while allowing for a continuous develop-
ment of the plastic region. Also

—(z - ;L) + R?(Zt - z)-

L x\ L
€ = = 1 - =€,
{ ¢ - ZL ( z) i
(D.3b)
z -z + R?(Zt -2)| L
+ - (B)es .
2t - =z J
In these assumed forms,
L, U . L, U
e;le if ei/ei >0
RY =
i
0 if c-:Ii‘/e‘iI <0
(D.4)
U, L . U, L
ei/el if eilel >0
RY =
i
. U, L
0 if ei/el <0

L] @ o o @ a8 * &
The initial strain stiffness matrix [k ] retains the same
form as that in Eq. (D.2), but the coefficients C1s €9, «sa5 C1g

now contain the factors Rg, R?’ R%, R%. Indeed, when Rg = Rg =
U
R? = Rj = 0, the ci's reduce to those given above.
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APPENDIX E

CALCULATION OF YIELD LOAD AND LOCATION OF
ELASTIC~PLASTIC BOUNDARIES AT NODES

In the current analysis of beam and plate structures under
combined lateral and in-plane loading it is necessary to locate
the depth of the elastic-plastic boundary at nodes and to cal-
culate the value of lateral loads at which yielding begins. A
procedure to determine these quantities is outlined below.

For plane stress, the von Mises yield condition reduces to

J, = 02 + 02 - o o+ 312 = 02 . (E.1)
X y Xy Xy o

Since the beam or plate is elastic through its thickness until
the yield condition is satisfied, we can write, for combined
bending and membrane stress in the elastic range,

{c} - {ﬁ} + 0 {ﬁ} - [E] {eT} . (E.2)

where for a plate

2 2
T_ou_ 1l/ow\"  ow
e T x T2 (Bx) z aXZ
2 2
T_ov_ 1l/ow\" _ 9w
o= 553 (5 * oy (E.3)
2
T _Qu,ov, owow ., 9w
ny ~ dy + 0x  Ox Oy 22 0xdy

and z 1is measured with respect to the middle surface. Here
{N} represents the membrane contribution to the stresses and
{M) represents the bending contribution. The quantity p in
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Eq. (E.2) is as yet undefined, but it represents the functional
form of the variation of the bending strains through the thick-
ness. Substituting Eq. (E.2) into Eq. (E.l) gives:

=R e+ - WM
2 ["x y Xy x vyl
+2o[NM +8M +38 M _-L1@EM +8M) (E.4)
|"x x vy Xy xy 2y x Xy )
+ W+ N +38 -NN
y Xy Xy
Let
A=W + M + 30 - MM
y Xy y
B=NM +NM +3N M _-Li@®M +NM) (E.5)
X X vy Xy xy 27y X Xy
C=1N2+ N +38% - NN -
y y Xy

For combined membrane and bending loads, let p = t - z, where
z 1s measured with respect to the upper surface of the plate.

The location of the elastic-plastic boundary through the
thickness occurs at that point, defined as 1z, where Jy = 0og.
That condition can be expressed by the following quadratic equa-
tion:

Ap2 + 2Bp + C - og =0 .

Solving for p, we obtain

-8z /B%-aAlc- P
p=t-1z-= T ( 0) (E.6a)
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or

7 — 2
+B? /B AA(C co>

z =t (E.6b)

This gives two values of 2z, correctly indicating the presence
of two elastic-plastic boundaries, which must satisfy the in-
equality 0 < zU < zL < 2t. (Recall that z is measured with
respect to the upper surface for combined bending and stretch-
ing.)

To determine expressions for the N's and M's, we combine
the stress-strain and strain-displacement (neglecting nonlinear
terms in displacements) equations.

_ B [ou _ ov _ ]
% ST Zlx*? (t - 2w, + (ay + (t Z)W’yy>_|
. E__ Jov - du _ ]
e A A G L A R C-R GO S LR
___E [ou, ov _ ]

Therefore, comparing Eqs. (E.7) and (E.2), we see that

= __E _ (du, v 5 __E
Ny 2 <Bx v 8y> > S 7 W T Vw’yy]
1 1-w

= E ov du = E
N = + v == = ey, + ww, E.8

y 1 - 2 <8y BX) y 1 - 2 Yy xx] (E.8)
N = —2E__ (Su_ ov M o=k
ny 2(L+v) <By + ox Mky 1+ v W’xy )

Substitution of these quantities into Eqs. (E.5) yields the fol-
lowing expressions for A, B, and C.
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_ E { _ 2 2
A= o v)z 1(W’xx w, )7+ 3w,
+w, W, + > z(W: +w, )2}
XX ’yy (1 - v XX vy
B = ” E’g[(l - v+ ) -t - av+ b !
(l-nvz;? 1ox Vogx T 2 Vogy]

vl 1 . - 2y, |
+ vl 2(l 4v + v )w,X + (L~ v+ )W’ny (E.9)

#3007 (554 Sy}

C =__...___._E2 f(@.u. __6:y.> +§(§u BV>2
(1 + v)2 \ox  ay 4 \oy = ox
2
ou Jv v ou , ov }
+ MY QU ooV |
ox Jy 1 - v)2 (Bx 5y>

In the case of pure bending, ﬁg = ﬁy = ﬁgy = 0. Also,
-z, with 2z measured from the middle surface. Therefore,
C=0, and Eq. (E.6b) reduces to:

(E.10)

and so indeéd we get two equal roots of opposite sign, indicating
symme try with respect to the median surface. Here 0 < |z| < t.

In any plasticity problem it is necessary to compute the
load at Whlch plastic behavior is initiated. For combined bending

i
}

118



and membrane problems, it is assumed that the membrane load is
applied first (the plate may not go plastic in membrane loading
alone) and then the lateral load is increased to the value that
causes initial yielding of the plate. Consequently, the stresses
at the upper and lower surface at initial yielding can be written
as

_ _E [/3u vy (1) (Y]

o‘X = . vz l<a: + v a;_) * tk <W’XX + VW,y_y >_I
- —.E [(ov ou\ (1) (1) |

0 =T [(a‘}’, +v ) s (w,yy + v, o >J (E.11)
_ _E [ou,ov, (L]

Txy T 2(1 +v) [83 + Si - Zktw’xy ]

where k 1is the lateral load required to cause initial yielding,
i.e., Jp = Og; and the superscript (1) indicates curvatures
due to a unit lateral load.

Thus, if we let p =+ kt in Eq. (E.6a), we get

~//B2 -.A(C - 02>

- B
+ kt = % e (E.12)

I+

Therefore, the critical lateral load necessary to cause initial
yielding is

- B % /BZ~A<C~0CZ)>
- tA

crit = k (E.13a)

if, at the critical node, yielding occurs first at the upper sur-
face, and

k = e (E.13b)

B = \//Bz - A(C - 02)

crit
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if, at the critical node, yielding occurs first at the lower sur-
face. Of the two roots for each situation we take the smallest

positive value.

Sometimes it is more convenient to express the quantities
A, B, C in Eq. (E.9) in terms of the membrane and bending
strains at the lower surface. Multiplying and dividing appropri-
ate terms in Eq. (E.9) by -t we get:

2 2 2

E L L 3 L
A= e. - e + T v
2 + v)z 1( xb yb) 4 'xyb
L L Y ( L L )2
t+te.e, +———3le. . +te }
xb yb 1 - V)Z xb yb
B e - —FE oo T = v s vByel - L@ - av + 3yl |
e@ - v2 Lol xb 2 yb)
(E.14)
[_ 1. _ 2, L - 2, L |
+ ©m| 2(1 by + v )eXb + (L-v+v )ebe
3., 12 L
+ 7 (1 =) rYXymexyb}
2
E ! 2 3.2
C = - 2 +
(1 + v)2 l(exm eym) 4 nym Cxm°ym

where the subscripts b and m refer to bending and membrane
strains, respectively. In the case of bending alone, B = C=0
and

* g
P . == (E.15)
crit t\/A
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APPENDIX F

TRIANGULAR COORDINATES AND INTEGRATION FORMULAS

This appendix presents a summary of pertinent information on
triangular coordinates and several manipulations performed with
them. It is included to clarify several sections in the report
and appendices and to define certain quantities used extensively
in the text. The discussion follows closely that given in
Ref. 42.

The coordinates of a plame triangle 1-2-3 (see Fig. 76)
lying in the x-y plane of a global Cartesian coordinate system
X, ¥y, z are (El, §1), CEZ, ?2), and C§3, §§). Define now a
"local global" Cartesian system X, y, z with axes parallel to
the global axes X, y, Z, respectively, and its origin located
at the centroid "e¢" of the triangle. The global coordinates of
the centroid are:

-— _‘l‘—.. — —
S 3(xl + X, + x3)
(F.1)
1_. - o
Vo =30ty +yy) -
The local coordinates of the nodes of the triangle are:
X; =X, 7%
i=1,2,3. (F.2)
Yi T ¥ T e
Hence we see that
Xy + Xq + Xy = 0
(F.3)

Yyt ¥y tyy=0
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and the area of the triangle is

1 xl yl
-1
A= 2 1 Xy Yo (F.4)
1 x3 y3

Any point P(E, ;) within the triangle, when joined to the
vertices by straight lines, divides it into three subtriangles
(see Fig. 77). Now let Ay, A,, A3 be the areas of these sub-

triangles, and define the three area coordinates of P as
Ai
W, = 3 i=1, 2, 3, (F.5)

where the subscript i refers to the vertex of the triangle
opposite the subarea Aj;. Now A = A] + A9 + A3 1is the total

area of the triangle, and as a result

Wy + ®y +-a§ =1 . (F.6)

The equation, w; = constant, represents a line parallel to
the side opposite vertex 1. The coordinates of vertex 1 are
wj =1, oy =ax=0 (1#j#Kk.

The Cartesian coordinates x, y are related to the area
coordinates by the matrix equation

1 1 1 1 g
X) = | % X, X, Wy . (F.7)
y Y1 Y2 Y3 {19
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The inverse relationship may be written as

@y [ %973 " %X3¥, Yy " Y3 X3 "%, [} 1
N - - -
® | TR | X3V T XYy Y3 TV *Fp TE3 )X
g | 1Yy T XYy Yy T Yy Ep T X VT
(F.8)
[ 24, by & 1
_ L
=2a | By Py 2y |{x
L 2A3 b3 a3 y
Note here that, from the definitions,
al -+ a2 + a3 =
(F.9)
by + b, +by=0 .

The definition of these area coordinates wj makes the integra-
tion of polynomial terms over the triangular region extremely
simple. These integrations are necessary for the formation of
the stiffness, initial strain stiffness, and initial stress
stiffness matrices. The integration of polynomials expressed in
area coordinates is independent of the shape of the triangle and
can be written as a multiple of the area; i.e.,

Mi Mj Mk
w; aﬁ Wy dA = pA (F.10)

A

where i, j, k represent any permutation of 1, 2, 3. In Ref. 66
a general formula for p is given as
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()1 (M3) 1 (1)
(Mi+Mj +Mk+ 2)1

p =2 (F.11)

Using this relationship and considering the local Cartesian
coordinate system located at the centroid of the triangle, we can
define

= P q
P - dA ® Folz
pq X'y ( )
But

X = xlwl + szé + X3w3

(F.13)
Y= 70 w0y t sy
Substituting Eq. (F.13) into Eq. (F.12) gives
P o= ( + + )" + y,0, + y,0 )qu
pq x 0 F Xy F x305) (yyo F yp®) Foya0y © (F.14)

A

Succinct forms for this expression, using Eqs. (F.3) and (F.1l1)
for n=p + q, ranging from 0 through 6, are given in
Ref. 42. A general formula for all orders is derived in Appen-
dix I and is repeated here:

plq!
P = 24
Pq (p + q+ 2)1

L3 D) - @O Nt O - (5w 1t [s+ull
2 Z Z (p=)!(r=s)! (g - £)! (t ~u)!stul

0 s=0 t=0 u=0

pP-r gq-t _r=s t-u _s _u
(Xl i %2 Yo %3 y3)

(F.15)
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APPENDIX G

INITIAL STRAIN STIFFNESS MATRICES
FOR RECTANGULAR PLATE ELEMENT

The initial strain stiffness matrices for a rectangular
plate element in pure bending and in combined bending and mem-
brane loading have been derived from the assumptions shown in
Fig. 34 and defined in integral form in Eq. (15). For bending
alone, the initial strain stiffness matrix can be written as:

Clel \:
M 11/a (11 )
Myll/b eyll
M y11/ab Vg1l
PzZl *x21
- -——-——-E——-E—[ L(i,3) H Gy } < L) = [k*]{eo} :
3(L = v) .
> (16 x 12) (12 x12) | |
z12 x12
(G.1)
PZZZ *x22
Mkzz/a . ey22
M g /P [Y}l:yzy
MkyZZ/a?)

Here P, and the M's represent the fictitious restoring

force in the lateral direction and fictitious moments, respec-
tively. The matrix [ Gy ] is a diagonally partitioned array
with 3 x 3 submatrices given by:

125



b v b 0
a a
- a a
[G] = Vv b b 0
0 0 1 - v ]

The coefficients of the terms in L(i,j) are given in
Table 1; e.g.,

L(1,1) = (-7/20) (2t%) + 4/15) ey, + (L/12)¢E2, +'(0)t221

= ~2 ~2 -2
+ (0)tz,, + (27/140)z7; + (39/1400)z], + (~3/140)z,

+ (=13/4200);§2 + (33/350)z + (3/70)z

11%12 11%21

+ (11/1050)z + (11/1050)z

11%22 12%21

+ (13/2100)z + (~11/1050)z

12%22 21%22 °

As in the case of pure bending of a beam, all z's are mea-
sured with respect to the median surface. All other quantities
appearing in Eq. (G.l) are defined in Fig. 34.

The corresponding relations for the case of a rectangular
element under combined bending and membrane forces are as fol-
lows:
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x21
y21

x12

wan) mm eemcre————.

\ y22 ‘J

% ! *
ki1 i k5
_;..-m—‘ui—--a— o i
i
* %
|

K, |k

22 |

PL
vxyll

eXZl

ex12

€x22

PL

yxy22

(G.2)
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where

1= |

* L,. .
* U
[kyy 1 = ab{LM(

ablLijl(i,j)} :

|

e
N’
A

>

*
[kyy

L The numerical coefficiegts of the terms in Lg(i,j) and
Lp(i,3) wused in forming [ky;] and [kyp] are the same as

those in the L(i,j) for pure bending shown in Table 1. How-
ever, the terms with which they are associated change as follows:

Pure Bending Bending and Membrane Loading
. U, . T, .
L(i,3) L (i,9) Ly(,3)

2¢2 0 -2¢2

- U -L
tzll -3tzll tzll

- i -L
t212 -3t:zl~2 t:z12

- -U -
tzzl -3tz21 “21
- -U -L
t222 3t:z22 t:zz2
-2 -u? _-L2
11 211 Z11
22 EUZ _ELZ

12 12 12
22 EUZ _ELZ

21 21 21

EZ EUZ _ELZ

22 22 22
7,7 T -2k 2y
11%12 211%12 11%12
Z..Z 20 5V -2k 2k
11%21 11%21 11%21
s sU -U =L -L
211%22 211%22 211%22
.7 2V Y gLzt
12721 12%21 12%21
2% 2] 7 -2k ok
12%22 12%22 12%22
- ~U EU _-L EL
21%22 291%22 291%22
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% *
The membrane submatrices, [kypy] and [kyp]l, of the

strain matrix may be determined by using the form:

initial

R b I T VA VA V- e v A s A - & [ N ST R B T
a a b a a b a a b a a b
Vigp Loy Lpgt YLy Los Logh Yhog Log Logt Vlppy Lypp Byt
b b a b b a b b a b b a
i A F e L VI VAN U ¥ A ¥ A ¥ S YU B P
a a b a a b a a b a a - b
L,U(i’ji] Pag L Ru3r Ylys Lus Dugt YLy Lug Lot Yhuan Lagn Langt
B b 2 3 b a b a b b "2
or =
Lt sy Yoy Lsgt Lsy  “Lgy  Lsgt  Ls;  “Lg;  Lsgt Lsig “Lsyp  Lsppt
LM »J a a b a a b a a b a a b
oo Lep  Lezt  “Lgs  Les  Legt  Vhgg  Leg et "Leux  Leux  Leiot
b b a b b a b b a b b a
e e S N L o O T 1 oy v A Ay 1 oy L R 2 T R 1
a a b a a b a a b a a b
Lgy  Lgy  Lggt  VIgs  Lgs  Lggh  tLgg  Lgg  Lggt  ¥Lggy  Lgyp  Lggpt
T b a b b a b b a b b a
l - v

where —-5——.

The coefficients in the expressions for

ample,

U, 1) =0¢-1) +2%. (-5 +29 (- L + 29 ¢
Ly s 1107 % 12Y7 12 21
L oy =L, 1, =L, 1, _-L
Ly(LD) =t 1) =293 3) =2 73) 7 25 (

u,. .

L Iy(i,3) and
Lym(i,j) are given in Table 2. These should be multiplied by the
appropriate quantities for the upper or lower surface; for ex-

. L -U ,_ _L

g) t 2550 35

i, _ L ,_ 1.
=g Tz ) -

All z's for combined bending and membrane loading are measured
with respect to the upper surface. Other quantities are defined

in Fig. 34.
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INITIAL STRAIN STIFFNESS MATRICES
FOR TRIANGULAR PLATE ELEMENT

APPENDIX H

The initial strain stiffness matrices for a triangular plate
element in pure bending and combined bending and membrane states
are derived from the assumptions shown in Fig. 35 and defined in

integral form in Eq. (15)

For bending alone, this matrix is defined by:

]

=

x3

=

y3

= =
g
W

xy3

=

L

>= [K*1¢

\ T3

(H.1)
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*
The element initial strain stiffness matrix [k ] may be
written as:

K] = mrmuﬁmv (H.2)

VY
p

where the matrix [W] relates the total strains to the general-
ized displacements, [E] 1is the matrix of coefficients asso-
ciated with Hooke's law, and the matrix [Wg] relates the
plastic strains within the element to their nodal values. The
last array is a function matrix whose elements are determined
from the assumed distribution of plastic strain within the plane
of the element. For the triangular bending element, it is as-
sumed that the plastic strains vary linearly in the plane.

Integrating Eq. (H.2) through the thickness of the plastic
region of the element and multiplying the triple product under

the integral result in the following form for the element initial
strain matrix:

[€]=-;I%7§ @i - ez - 2 {ig) + (g,
A (H.3)

+y(Q] + ... y Qg0 ]an .

Substituting the functional variation of the elastic-plastic
boundary, i.e., assuming that 2z varies linearly in the plane of
the triangle, and integrating over the area, we obtain the final
form for the element initial strain stiffness matrix

2

6
¥ e . ——E 1ty J
k") - 119, 1} jiLjfﬁ (5.4)

3(L - v
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Here, for notational brevity, {[Qi]} 1is a "vector" of 15 matri-
ces of order (21 x 9), i.e.,

[q ] |
[Q,] |

Q) |

(057

whose nonzero elements are given on succeeding pages. The
{Pj}'s are vectors of 15 constants, defined below, and the Lj's

are scalar functions, also defined below. The matrix [C] is
the (21 x 18) condensation matrix, given in Ref. 42; it reduces
the order of the stiffness matrix by imposing a cubic variation
on the normal slopes. Finally, [A] is a 21 x 21 matrix re-
lating the 21 degrees of freedom to the independent parameters
a; of the fifth order displacement polynomial, also given in

Ref. 42. The scalar quantities Ly are given by

_ 5.2 _ L 1 2
L = 2t A(zlAl + ZZAZ + 23A3) Az (zlAl + ZZAZ + z3A3)
= - L.
L, ZA(zlbl + ZZbZ + 23b3)
I
2(zlb + zzb2 + z b )(z A + ZZAZ + z3A3)
Ly = - (z a; + z2 o+ z3a3)

(z A + z A, + z A )

- 2(2 a, + z.a. +z 32 ) 3By

272 3>
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L4==-—"'2-(zlbl+zzb2+z3b3)
4A
el Ga 4T +7.a)@b 4T, 43
L5 2A2(zlal + 2,3, + z3a3)(zlbl + zzb2 + 23b3)
L, = - “;~(; a, + z.a, +z.a )
6 4AZ 171 272 373

The vectors {Pj} are given by

(P ) (o ) (o )
00
0 |F20 P11
0 P11 P02
20 F30 Pa1
P11 Pa1 P12
o2 1o Po3
{Pl} = Pag ); {Pz} =04 s {P3} =Py |
a1 F31 P2
) ) P13
o3 P13 Fou
Puo P50 Pa1
% P31 Pa1 &)
E ) P32 23
| P13 )3 P14
\fo4) \f14) \Po§/
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Gzo\ (;11 ) Goz A
P30 Fa1 P12
Fa1 P12 o3
P40 P3y 22
P31 P22 P13
P22 F13 o4
{Pa} ={ Ps0 ; {Ps} = By pp {Ps} = P -

Par | F32 F23
3y Pa3 P4
Pa3 P14 Fos
P60 Ps1 P42
P51 Fuo P33
) Fa3 Pos
P33 Pou P1s

% U1 L%

The quantities A4, ai,‘bi and qu are defined in Appendix F.

The nonzero elements of the [Q;] matrices are given below.
Only the first three of nine columns are listed. To obtain the
remaining six columms, let i, which is equal to 1 £for columms
1-3, be 2 for colummns 4-6 and 3 for columms 7-9.

24Q:  (4,31-2) = 4A, (6,31-2) = 4vA,
(4,31i-1) = 4vA, 6,3i~1) = 4,
(5,31) = 4pA,

L
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ZAQZ:

2AQ3:

ZAQ4:

2AQ5:

2AQ6:
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(4,31-2)
(4,3i-1)
(5,31)

(4,31-2)
(4,31-1)
(5,31)

(7,31-2)
(7,3i-1)
(8,31)

(7,31-2)
(7,3i-1)
(8,31-2)
(8,31-1)
(8,31)

(8,3i-2)
(8,3i-1)
(9,31)

i

i

Zbi

2vbi
Zubi

2a

2va.,
i

2ua.

6b.
i

6vb,
i
4ubi

6a.
i

6va,
i

2b,
i

2vbi
4pua,

2a

2va,
i

4ua.

( 6,3i-2)
( 6,3i-1)
(7,31-2)
( 7,31i-1)

( 6,3i-2)
( 6,3i-1)
( 8,3i-2)
( 8,3i-1)

( 9,3i-2)
( 9,3i-1)
(11,3i-2)
(11,3i-1)

( 9,3i-2)
( 9,3i-1)
( 9,31)

(10,3i-2)
(10,3i-1)

(10,31-2)
(10,3i-1)
(13,3i-2)
(13,3i-1)

2vb
2b
12Ai

lZvAi

2va

4vAi

2vb
2b
24Ai

24vAi

2va

2a

4ubi

6vb.

i
6b.
i

6va

4A,

i
4VA,
i

( 8,31)
( 9,3i-2)
( 9,3i-1)

( 9,31)
(10,3i-2)
(10,3i-1)

(12,31)
(13,31-2)
(13,3i-1)

(12,3i-2)
(12,3i-1)
(13,31)

(14,31i-2)
(14,3i-1)

(14,31)
(15,31-2)
(15,3i-1)

8uA

4vAi

4A,
i

8uA
12VvA,

i
12A

12pA
4vAi
4Ai

12A,
i
lZvAi
16pA
12VA,
i
12A

12pA

24 VA,
i

24A
i



2AQ7:

2AQ8:

2AQ9:

ZAQlO:

2AQ11:

(11,3i-2)
(11,3i-1)
(12,31)

(11,31-2)
(11,31-1)
(12,31-2)
(12,3i-1)
(12,31)

(12,31-2)
(12,3i-1)
(13,31-2)
(13,3i-1)
(13,31)

(13,31i-2)
(13,31i-1)
(14,31)

(16,31i-2)
(16,3i-1)
(17,31)

#t

12b.

i
12vb,
i

6ub,;

i2va.
i
6b.
i
6vb,
i

6a
6va
2b.
i
2vb,
i
Sua

2a

va,
2 1

20b,
i

20vbi

8ub

(13,3i-2)
(13,3i-1)
(16,3i-2)
(16,3i-1)

(13,31i-2)
(13,3i-1)
(13,31)

(14,31-2)
(14,3i-1)

(14,3i-2)
(14,3i-1)
(14,31)

(15,31-2)

(15,3i-1)

(15,31i-2)
(15,3i-1)
(19,3i-2)
(19,3i-1)

(18,3i-2)
(18,31i-1)

2vb,
i
2b
40Ai
40VA .
i

2va
2a.,
i
Subi
6vb,
i
6b.
i

6va.
i

6ub
12vbi
12b

12va,

i
12a
4Ai
4vA

vai
2b

(17,31)
(18,3i-2)
(18,31i-1)

(17,3i-2)
(17,3i-1)
(18,31)

(19,31-2)
(19,31i-1)

(18,31-2)
(18,31i-1)
(19,31)

(20,31i~2)
(20,3i-1)

(20,31)
(21,31-2)
(21,3i-1)

16 A
4vA
4A

24A,
i
24vAi
24pA
12VvA,
i
12A

12A
12vA,
i
24UA
24vAi
24A

16pA
4OvAi
40A
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2AQ12: (16,3i-2) = 20a, (18,3i-2) = 2vai (19,3i-2) = 6vbi
(16,3i-1) = ZOvai (18,31i~1) = Zai (19,3i-1) = 6bi
(17,31i-2) = 12bi (18,31) = lzubi
(17,3i-1) = 12vbi
(17,31) = 8ua,

2AQ13: (17,3i-2) = 1Zai (19,3i~-2) = 6vai (20,31-2) = 12vbi
(17,3i-1) = 12vai (19,3i-1) = 6ai (20,3i-1) = lei
(18,3i-2) = 6bi (19,31) = 12u,bi
(18,3i-1) = 6vbi
(18,31) = 12uai

2AQ14: (18,3i-2) = 6a (20,3i-2) = 12vai (21,3i-2) = 20vbi
(18,3i-1) = 6vai (20,3i-1) = 12ai (21,3i-1) = 20bi
(19,3i-2) = 2bi (20,341) = Subi
(19,3i-1) = 2vbi
(19,31) = 12pai

ZAQIS: (19,3i-2) = Zai (20,31) = Suai (21,3i-2) = 20va,
(19,3i~1) = Zvai (21,3i-1) = ZOai

where p = il“%“ll and once again, for bending alone, all z's

are measured with respect to the middle surface.
The initial strain stiffness matrix for this triangular ele~-

ment for the case of combined bending and stretching, and on the
basis of the assumptions shown in Fig. 35, can be written as
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zl x1
U

Mkl eyl

PU

Myl {nyl
U

Mﬁxl *x2
€U

xyl y2

PU

Myyl nyZ
€U

x3
- e U

S B W y3

11 \ 12 PU

M

ﬂ vy3 (18 x 9) 1 (18 x 9) <7xy3
-..-——--—?= S T un aen, wom enem

[k ] {e} (H.5)

p * 1 k* L
x1 ko1 22 x1
p L6x9 { 6x9 ]| L
€
yl yl
PL
Px2 nyl
L2,
Px3
| pL
P Y
y3 xv3
N, \_ 7"
where, in this case,
bl
# E -, -1 U
ki ] = = L [31'1a71] [Q.]} n P.} (1.62)
L 6(1 - v2) Ut ,zl 33
Jg
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with

2
U _ 3t,~U - ~U, \ _ 1 U -u -y
Ll =% (ZlAl + ZZAZ + z3A3) AZ(ZlAl + 22A2 + 23A3)

U _ 3t~ i 1} 1}
L, = 2A(zlbl + ZZbZ + z3b3)

1 ~U -U -u, | ~U ] ~

AZ(zlbl + zzb2 + 23b3)(zlAl + ZZAZ + z3A3)
U _ 3t,~U ~U -u
L3 = oAtz + 2,8, + z3a3)

1 ~U ~U -y, | ~U i ~

A2(zl.A1 + ZZAZ + z3A3)(zlal + 2,8, + ZBaB)
U 1 — —U. U 2
L4 = - ZXE(Zlbl + zzb2 + 23b3)
u_ 1~ -U -u_ | ~U -y ~U
L5 = 2A2(zlal + Z,3, + z3a3)(zlbl + zzb2 + z3b3)
LU = - —l~(;Ua + 2%, + zYa )2
6 2Y171 272 373

LA
and
/] 6
ofe . - 4
1,1 = === Je} | Y ak de
6(L - v°) 1 =1 il
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with

2
L_ .2, t, L -1, L, y _ 1~ -1 ~L
Ll = 2t° + A(zlAl + ZZAZ + 23A3) AZ(zlAl + ZZAZ + z3A3)
L _ t L o -
Ly = 9 (zpPy + 2,0, + Z3by)
1.z ~L =L L, =L, -L
A2(zi’b1 + zzb2 + z13‘b3)(zlAl + ZZAZ + z3A3)
L _ t L -L ~
L3 2A(zla1 + z,8, + z3a3)
A =L ~L | ~L -L -L
A2(zlal + 2,2, + 23a3)(z1A1 + ZZAZ + 23A3)
L 1 —L —L —Lb 2
L4 = - -§(zlbl + zzb2 + Z, 3)
4A
L 1 ~ L, -1 L - —
L5 = 2A2(Zlal + z2,3, + 2333)(zlb1 + ngZ + z§b3)
L 1l -~ -L =L 2
L6 = - ZZE(zlal + 2,2, + 23a3)

%
Note that all the matrices used in the construction of [kjjp]
and [kip] are as previously defined for bending alone; only the
Lj's are different.

The membrane portions of the initial strain matrix may now
be written as
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* o __E . J ~U
[kzl] = 1 - vz) 1(z A + ZZAZ + z A )[Ql
+ ;k{(z bl+-ng24-z b )P 4—(zlal+-zga2+-z a )Pll}[az]

+ JK{(Z b.+z b +z b3)P +-(zla +z.a Ega3)P02}[53]}

17 %Py 17 %93y

(H.6¢)
* . __BE 1 + L —L ~
(15,1 = { 2e - LG+ 2ha, + 20 |alq))

21 - v3y 1

2A{(z b +sz +sz PPyt (zla +zla, + 2z 32,)P, [QZ]

1 7272
L 1 ~
- ZA[(ZLb i-sz +z b +=(zlal+-z2a24-z a3)P02_[Q3]}
(H.64d)

Here the [Qj] are 6 x 9 matrices, the first three columms of

which are given below. To obtain the remaining six columms, let
i which is equal to 1 for columms 1-3, be 2 for columns 4-6,
and 3 for columns 7-9. In addition, the columm indices must be
increased by 3 to obtain columns 4-6 and by 6 to obtain
columns 7-9.
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~ Ai
Q] = —5

1 22
~ bi
Q,] = —=>

2 42
~ ai
Q,] = —==

3 a2

All z's

vb

— =
ofl
< <

ot
H N
<

|

ot =
NII Nlu N
< <

il—*
N ¢
<

combined bending and membrane loadings.

A
—51[Q] (H.72)
2A
(H.7b)
(H.7¢)

are measured with respect to the upper surface for

As in the case of beams, the generated membrane strains may
be sufficiently large to cause the entire cross section of the
plate to go plastic without there being a point within the thick-

ness at which the plastic strain is zero.

The initial strain

stiffness matrix must be modified in much the same manner as was

done for the beam to accommodate this case.

The functional form

for the plastic strains used in deriving the initial strain stiff-

ness matrix now becomes:
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[rNE—.

U, ! .U .
[c,] } [c5] (H.8a)

where

wi 0 0

[U] _ U z.
[C | 1+ (Ki 1) ;U 0 w; 0
0 0 w,
i

where ; represents the area coordinates, defined in Appendix F,
and
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For the lower surface, we have

L

<

X

L [(aLq?t (Lg ! L
SR SR ICARNCIRECY
PL

'ny

(H.8b)
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where

w, 0 0
[ L] (z - zL) + Ki(Zt - z) 1
lCuJ = __L 0 (Di 0
1 2t - 2z
0 0 w,
i
with
U, L . U, L
eilei if ei/el > 0
KE = i
i
0 if eg/eP <

This form retains the assumption of a linear plastic strain dis-
tribution, and, as in the case of the beam (Appendix D), allows
for a continuous development of the plastic region.
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APPENDIX 1

INITIAL STRESS STIFFNESS MATRIX
FOR TRIANGULAR PLATE ELEMENT

The stiffness matrix for the 18-degree=of-freedomatriangular
element was derived in Ref. 42. The displacement function used
was a complete fifth order polynomial: '

!
w(x,y) = {1,x,y, cons xy%ys} . . (1.1)

291

The 21 degrees of freedom chosen were the displacements wj,
the slopes w w the curvatures w s W and w .
P xy° Vyy? rxx40 Woxy; 'YV 4

at each node, and the normal midpoint slopes w,,  of each side.
i

The latter were then eliminated by imposing a cubic variation on
the edge normal slope w,, (see Ref. 42), yielding the 18-degree-
of~freedom triangle.

The initial stress stiffness matrix is defined in Ref. 45,
and for this triangular element may be written as

kD= || cerntydmidiatica . (1.2)

A

Here [A] 1is the 21 x 21 matrix relating the nodal degrees of
freedom to the independent parameters aj of Eq. (I.1), as fol-
lows

(d)= [a) (aj); (1.3)

[E] is the condensation matrix, which reduces the 21 x 21
stiffness matrix to 18 x 18 (i.e., it eliminates the midpoint
normal slopes as independent degrees of freedom); [W]: is the
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function matrix relating the slopes w,y, and w, to the co~
efficients aj; and [N] is the matrix of membrane stress re-
sultants:

N N
X Xy
[N] = (1.4)
N N
| Xy y

Matrices [A] and [C] are presented in Ref. 42. The ele-
ments of the product [f W]’ [N][W1dA are given below.

1,i =0 i=1, 21

2,2 = (NX)POO

2,3 = (ny)POO

2,4 =0
2,5 =0
2,6 =0

2,7 = 3P20(Nx)

2,8 = 22, (M) + Pyo (N, )
2,9 = Py () + 2Py (N, )
2,10 = 3Pg, (N, )
2,11 = 4P4, (N )
2,12 = 3By (N) + Py (N, )

N
w
=
W
fl

2p, () + 2P21(ny)

Po3 () + 3B (N, )

(X
A ¥
'—-\
o~
]
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2,15
2,16
2,17
2,18
2,19
2,20

2,21

3,8

3,9

3,10
3,11
3,12
3,13
3,14
3,15
3,16

3,17

i

4P03(ny)

5,0 (M)

4P5 (M) + P O(N )

3P,,(N) + 2P31(ny)
2P, (N) + 3P22(Nky)
Pos () + 4P13(ny)

5y, (N y)

Poo (@)

0

0

0

3P20(ny)

2P11(N*y) + on(Ny)

Poz(Nky) + 2P11(Ny)

3P02(Ny)

4P3O(ny)

3P21(Ngy) + P30(Ny)

2P12(ny) + 2P21(Ny)
P03(Ngy) + 3P12(Ny)

4P03(N )

P40 Wy
4P31(ny) + B 0N
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3,18
3,19
3,20

3,21

4,4
4,5
4,6
4,7
4,8
4,9
4,10
4,11
4,12
4,13
4,14
4,15
4,16
4,17
4,18
4,19
4,20

4,21

f

2P (N, ) + 3P,y ()

Boy () + 4P 5 ()

i

SPOA(Ny)

r4P20(NX)

ZPll(N ) + 2 2O(N )

4Pyq ()

26P30(Nx)

4Py () + 2P3, (N, )

281, (N) + 4B, (N )

6B, (N )

.8P4O(Nx)

6P31(NX) + 2P, (N )
4P22(Nx) + 4 31(N )

(N ) + 6P22(ny)

; 8P13<N )

i w

’lOPSO(NX)

8B, () + 2P5 (N, )
6P3, (M) + 4B, (N, )

32 My y)

2P14(N ) + 8P23(N )

4P23(NX) + 6P

1OP14( )



5,5
5,6
5,7
5,8
5,9
5,10
5,11
5,12
5,13
5,14
5,15
5,16
5,17
5,18

5,20

5,21

6,6
6,7
6,8
6,9

6,10

it

Pog (M) + 2Pyq (N, ) + Py (N)
2By (Nyg) + 245 (N))
38y () + 350 (N, )
2P1, (N + 3P, (N ) + Py (N)
Pos (M) + 3P12(ny) + 2P21(Ny)
3Pg3 W) + 3P, (V)
4P4q () + 4P40(ny)
3Py, () + 4P31(Nky) + Py ()
2Py 3 (N,) + 4Ry) (N ) + 2P4; (N)
Pog (M) + 4R15 (N, ) + 3B, (N)
4o, (N, ) + 4P 3 (N)
5B4p (M) + 5Pgo (N, )
4R3p (N + 58,7 (N, ) + P (ND)
3Py (M) + 53, (N ) + 22, (N))
2P, () + 5Bya (N, ) + 3B, (M)
Pos (M) + 5B1, () + 4P, 3 (N)
5Pos (yy) + SP1, (N0)
4o (M)

6251 My
41, (e ) + 2Py (N)
283 (N,) + 4B, ()

623 (M)

151



152

6,11
6,12
6,13
6,14
6,15
6,16
6,17
6,18
6,19
6,20

6,21

7,7

7,8

7,9

7,10
7511
7,12
7,13
7,14
7,15
7,16

7,17

8P, (N )
Pzz(ny) + 2P31(Ny)
4P13(ny) + 4P22(Ny)
2904(ny) + 6P13(Ny)
8P04(Ny)
10P41(ny)
8P32(ny) + 2P41(Ny)
6P23(ny) + 4P32(Ny)
4Pl4(NXy) + 6P23(Ny)
2P05(ny) + 8P14(Ny)
10905(Ny)

9P O(N )

31 M) + 3B, (N, )
3P22(N ) + 6P31(ny)
9Pyq Ny )
12P50(NX)
9B, (M) + 3Pgo (N, D)
6P, (N) + 6B, (N )
3P, 5 (N) + 9P32(ny)
12p 3( )
15P¢q (N)

12P51(N ) + 3P60(

5



7,18
7,19
7,20

7,21

8,8

8,9

8,10
8,11
8,12
8,13
8,14
8,15
8,16
8,17
8,18
8,19
8,20

8,21

9,9
9,10
9,11

9,12

i

9B,y (Mg) + 6P5; (N, )
6P33 (N + 9P, (N, o)
38y, () + 12P33 (N, )

15P24(ny)

4PZZ(NX) + 4P31(ny) + P4O(Ny)
2Pl3(NX) + 5P22(ny) + 2P31(Ny)
O(Nx) + 6P13(ny) + 3P22(Ny)
8P41(NX) + 4P50(ny) + O(Ny)
6P32(NX) + 5P41(ny) + PSO(Ny)
4P23(NX) + 6P32(NXy) + 2P41(Ny)
2P14(Nk) + 7P23(Nky) + 3P32(Ny)
O(NX) + 8Pl4(ny) + 4P23(Ny)
10P51(Nk) + 5P6O(ny) + O(Ny)
8P42(Nx) + 6P51(ny) + P6O(Ny)
6P33(NX) + 7P42(ny) + 2P51(Ny)
4P24(Nk) + 8P33(Niy) + 3P42(Ny)
2P15(Ng) + 9P24(ny) + 4P33(Ny)

O(NX) + 10P15(ny) + 5P24(Ny)

P04(Nx) + 4Pl3(NXy) + 4P22(Ny)
O(Nx) + 3P04(ny) + 6P13(Ny)
4P32(NX) + 8P41(Nky) + O(Ny)

3P23(NX) + 7P32(ny) + 2P41(Ny)
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9,13
9,14
9,15
9,16
9,17
9,18
9,19
9,20

9,21

10,10
10,11
10,12
10,13
10,14
10,15
10,16
10,17
10,18
10,19
10,20

10,21

H

i

i

L]

0

L]

]

L]

i

L]

2P, () + 6P23(ny) + 4P32(Ny)
Pos (M) + 5P14(ny) + 6P23(Ny)
0 (NX) + 4Py (ny) + 8Py, (Ny)
5P42(NX) + 1OP51(ny) + O(Ny)
4Paa (N ) + 9P42(ny) + 2P51(Ny)
3P24(NX) + 8P33(ny) + 4P42(Ny)
2P (N + 7?24(ny) + 6P33(Ny)
Pog (M) + 6P15(ny) + 8P24(Ny)

O(NX) + 5P06(ny) + 10P15(Ny)

0N, D + 9P (V)
125, (N, ) + 0(N.)
9P, (N, ) + 3P4, ()
6P, M, ) + 6P, 3 (N)
3Bo5 M )+ 9P, (V)
o, ) + 12,5 (M)
L5P,,, (N, ) + 0(N)
12P4, (N, ) + 3P, (V)
9Py, (N ) + 6P 43 (N )
6Py 5 (N, ) + 9B, (N)
3Poe Nyy) + 129 5 (N.)

O(ny) + 15806 (N)



11,11
11,12
11,13
11,14
11,15
11,16
11,17
11,18
11,19
11,20

11,21

12,12
12,13
12,14
12,15
12,16
12,17
12,18
12,19
12,20

12,21

4

i

[

L]

i

i

Il

16P, () + 0N, )
12P5) (N) + 4Bgo (N, )
8P, (N ) + 8P51(ny)
4245 (N) + 12, (N, )
O(N,) + 16P35 (N, )
20P5o (V) + O(N, )
16Pg; (N) + 4B, (N, )
12P5, (N) + 8Bg) (N, )
8P, (N) + 12P52(N )
4Py, (N) + 16,5 (N, )

o) + 20P34(ny)

9,, () + 6P (N ) + P60(Ny)
6P, (N) + 8P42(ny) + 2P51(Ny)
3P,, (N) + 10P33(ny) + 3P42(Ny)
O(NX) + 12P24(Nky) + 4P33(Ny)
15P61(Nk) + 5P70(ny) + O(Ny)
12P 5, (N ) + 7P61(ny) + P70(Ny)
9P, (N) + 9P52(ny) +A2P61(Ny)
6P,, (N) + 11P43(ny) + 3P52(Ny)
3P, (N,) + 13P34(ny) + 4P43(Ny)

O(NX) + 15P25(N*y) + 5P34(Ny)
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13,13
13,14
13,15
13,16
13,17
13,18
13,19
13,20

13,21

14,14
14,15
14,16
14,17
14,18
14,19
14,20

14,21

15,15
15,16
15,17
15,18

15,19

[

i

4P, (N) + 8P33(ny) + 4P42(Ny)
2P, (N + 8P24(ny) + 6P33(Ny)
o) + 8P15(ny) + 8P24(Ny)
10Pg, (N ) + 10P61(ny) + O(Ny)
8P,y (N) + 10P52(ny) + 2P61(Ny)
6P, (N) + 10P43(ny) + 4P52(Ny)
4P, (N ) + 10P34(ny) + 6P43(Ny)
2P o () + 10P25(ny) + 8P34(Ny)

O(NX) + 1OP16(ny) + 10P25(Ny)

Py (M) + 6P15(ny) + 9P24(Ny)
O(N) + 4P06(Nky) + 12P15(Ny)
5P, 4 (N) + 15P52(ny) + O(Ny)

4P g, (N) + 13P43(ny) + 3P52(Ny)
3P, 5 (N) + 11934(Ngy) + 6P43(Ny)
2P (N) + 9P25(ny) + 9P34(Ny)
Po7; (M) + 7?16(ny) + 12?25(Ny)

O(NX) + 5P07(Nky) + 15P16(Ny)

O(ny) + 16P06(Ny)
208,53 (N, ) + 0 ()
16P34(ny) + 4P43(Ny)
12P25(ny) + 8P34(Ny)

8216 () + 12By5(N)



15,20

15,21

16,16
16,17
16,18
16,19
16,20

16,21

17,17
17,18
17,19
17,20

17,21

18,18
18,19
18,20

18,21

19,19
19,20

19,21

4?07(ny) + 16Pl6(Ny)

O(ny) + 20P07(Ny)

25Pg, (N ) + O(ny)
20P5q () + 5Pgq (N, )
15Pg, () + 10P,; (N, )
L0P5, (N,) + 15P¢, (N )
5P,, (N) + ZOPSB(ny)

0QN,) + 258, (N )

16Bg, (N,) + 8P7; (N, ) + Pgy(N)
12P53 (N) + 11Rg, (N, ) + 2P, (N)
8P, () + 145 (N, ) + 3B, (M)
b4Ryg(N) + 17P,, (N ) + 4P 55 (N)

o) + 20P35(ny) + 5P44(Ny)

9P44(Nx) + 12P53(ny) + 4P62(Ny)
6P5 (N ) + 13P44(ny) + 6P53(Ny)
3P26(NX) + 14P35(ny) + 8P44(Ny)

O(NX) + 15P26(ny) + 10P35(Ny)

4Pyg (Ny) + 1255 (N, ) + 9P, (N)
2P1 7 (N) + 11Ry (N, ) + 12P5(N)

O(Ni) + 10P17(ny) + 15P26(Ny)
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20,20 = Py (N) + 8, (N, ) + 16, (N

il

20,21 O(Nx) + SPOS(NXy) + 20?17(Ny)

21,21 25P08(Ny)

After this matrix is formed, it must be pre=- and postmulti-
plied by the product [c}’[A"1]’ and its transpose, respectively,
as shown in Eq. (I.2). It must also be transformed (if required)
to satisfy the boundary conditions, just as the conventional
stiffness matrix [k(0)] is transformed (see Ref. 42 for types
of boundary transformations).

The quantities qu are defined as follows:
= || xPy? I.
PPq x'ydA , (L.5)
where

3

X = 2 X 0, (1.6a)
i=1
3

y = z Y50 (1.6Db)
i=1

are the local Cartesian coordinates; =Xj,y; are the local nodal
coordinates; the ; are the triangular coordinates defined in
Appendix F; and A 1is the area of the element.

Simple formulas for qu for orders up to n=p+ q=206

are given in Ref. 42. However, Pyq's for n = 7,8 are needed
Pq

for the initial stress stiffness matrix. Since obtaining suc-
cinct forms for these expressions is tedious, a general formula
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(which includes the lower order terms) is used; this is developed
as follows.

By definition,

= P q
qu = (x W+ xyWy + xg 3) (ylwl + y,0, + y3w3) daA . (L1.7)

Now (a + b+ ¢)P may be written as

P T
@+b+aP =) ¥ (B)(%)aP b 75" (1.8)
r=0 s=0
where
<rp,> = ! (pp,!, )t ’ etc.
Therefore,
Pg Y )OO T oy s
A Ts8stsu (1.9)
(wrll“' (r+t) w§r+t) = (st+u) wé(,Sﬂ))dA ]
But
M, M, IM
jj[ wileJwtde = 2A G M iﬁmkk+ 55 (1.10)
A
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(see Appendix F). Thus the final form of the integral can be
written as

plq!
P = 2A ®
Pq (p + q + 2)!

=3 fp+q) - (x+ ) Itl(x+¢t) - (s+u) ]t [s+ull .
Z Z 2 p-)t(x=-8)t(g-t)t(t-u)istul
S=

0 s=0 t=0 u=0

(L.11)
[ p~r q-t r-s t-u _s u]
11 Y1 *2 Y2 %3 73] -
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APPENDIX J

CALCULATION OF MEMBRANE STRESS RESULTANTS

Values of membrane stress resultants, used in forming the
elements of the initial stress stiffness matrices, are required
in the solution of problems of geometric nonlinearity and in the
combined bending and stretching plasticity analysis. For stati-
cally determinate bending and stretching problems, e.g., a rec-
tangular plate with a uniformly applied membrane load in one
direction, the values of the membrane stress resultants remain
constant throughout the analysis. However, for statically inde-
terminate and geometrically nonlinear problems, these membrane
stress resultants must be calculated from the elastic strain dis-
tribution through the thickness at nodes for each incremental
step. Various possible distributions are shown in Fig. 78a-e.

The elastic stress-strain relation for an isotropic medium
may be written as follows:

e _ 1 -

e = E(Ox voy)

e =L - vo) (3.1)
y EVy X ’
e _ 1

ny G Txy

where G = E/2(1 + v) is the shear modulus.

Equations (J.1) may be integrated through the thickness to
cbtain

o1
il
(0]
)
o.
N
il
1 fp

- 1 -
(qx vcy)dz = E(NX vNy) . (J.2a)
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Similarly,

~ e 1

e =|edz ==(N = vN)
y y Evy X

—_ B e =_1__

ny - nydz G ny :

The membrane stress resultants, Ny, Ny,
ten in terms of the eij quantities as

E e ——
N =—=——(e_ + ve )
X a - v2) X y

E — ——
N = —E e+ va)
Y@ -®) x

and Ngy,

(J.2b)

(J.2¢c)

may be writ-

(J.3a)

(J3.3b)

(J.3¢c)

Since a linear distribution through the thickness is assumed
for both the total and plastic strain components, we can readily
determine the values of ej; f£from the elastic strain distribu-

tion through the thickness. For a generic strain e,

from Fig., 78a

- 1 T T U L —L
e=73 (eU(Znt) + eL(Zt - 20t) -~ ez =~ ¢ (2t - = ))

where
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and eU, = are the plastic strains at the upper and lower sur-

faces, eg and eE are the total strains at the upper and lower
. . =U =L

surfaces, 2t is the thickness of the element, and =z and =z

represent the ordinates of the upper and lower elastic-plastic

boundaries, respectively, measured from the upper surface.

At an elastic node, (eU = el = 0), Eq. (J.4) reduces to
e = eg(nt) + ez(t - nt) . (J.5)

Equations (J.4) and (J.5) apply at nodes where bending predomi-
nates over membrane behavior (where the total strains at the two
surfaces are of opposite sign). A fully plastic node where the
total strains are of the same sign is illustrated in Fig. 78b.
In this case

e=

N et

(eg + e{ -V - ) (J.6)

If the section is entirely elastic, we have
- t

_t, T T
e = 2(eU + eL) . J.7)

If only the upper or the lower surface is plastic and the total
strains are of the same sign (Figs. 78c and 78d), we have

- T, T, _1 U-U
e = t(eL + eU) 5 € 2 (J3.8)

(for the upper surface only)

or

., T, T, _1 L. _-L
e = t(eL + eU) 5 € 2t ~ z7) (3.9

(for the lower surface only)

163



Equations (J.8) and (J.9) can be combined to treat the situation
shown in Fig. 78e.

+€(2t“'Z)J, (J,10)

The values of Ny, Ny, and Ni determined in this way are
nodal values. The actual value used in the initial stress stiff-
ness matrix for the triangle is the average of the three nodal
values. While it may be consistent to use values for the re-
sultants at the centroid of the element, such values are more
difficult to obtain and require much additional calculation. The
difference between centroidal and average values decreases as the
element size decreases.
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APPENDIX K

COMPUTING TIMES FOR SOME PLATE BENDING PROBLEMS

All computations were carried out on the Grumman/IBM 360/75
system with a standard maximum available core storage of 307 K
bytes. For several combined bending and membrane problems, how-
ever, up to 512 K bytes of core storage are required. Where
possible, the computer programs were written in a manner that
minimized the use of peripheral storage devices. Consequently,
no tape units were used. However, random access disk units are
required to store components of the element initial strain stiff-
ness and initial stress stiffness matrices for the triangular
bending element.

Some typical running times are presented below for several
representative problems. The running times are influenced by the
amount and number of requests for printed output data as well as
by the number of degrees of freedom and number of increments re-
quired for a solution.

As can be seen from the table, there is a dramatic increase
in required running times for problems involving combined bend-
ing and membrane stress using the triangular element [case (i),
(3, (]. In these problems the increased time occurs as a con-
sequence of reforming the initial stress stiffness matrix in each
increment. Consequently, the total stiffness matrix for bending
must be reformed in each increment of load and then the resulting
system of equations solved. By contrast, the required times are
considerably reduced for bending alone, [cases (a)-(f)] or for
bending and membrane problems [cases (g) and (h) ] where the
stiffness matrix remains unchanged throughout the entire loading
range. For these problems, a solution technique is used which
performs an initial factorization of the stiffness matrix so that
succeeding solutions require only matrix multiplication.

The increase in computer time necessary for those problems
in which it is required to solve the system of equations in each
increment becomes apparent when one compares case (b) with
case (j). As seen from the tabulation given below, case (j) re-
quired more than triple the running time, although identical
numbers of load increments were required for both cases and, in
addition, case (b) had more degrees of freedom, members and
nodes. This comparison suggests that reforming the stiffness
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C&se
(a)
(b)

(c)
(d)
(e)
(£)

(g)

(h)

(1)

3

(k)

matrix and solving the resulting system of equations in each

loading step should be avoided, if possible.
stances, however, this may not be possible (e.g., geometric non-

linearity) .

In several in-

COMPUTATIONAL REQUIREMENTS FOR SOME REPRESENTATIVE PROBLEMS

Presented
Problem Description in Figure

Clamped Square Plate 46
Square Plate-Square 47
Hole

Square Plate- 49
Circular Hole

Simply Supported 51
Circular Plate

Clamped Circular 54
Plate

Simply Supported 56

Annular Plate

Simply Supported
Rectangular Plate 60
by = 1 = 1

X =3, n= 2

Simply Supported
Rectangular Plate 61
In-Plane Shear

Simply Supported

Circular Plate 62

= 1
a =3

Simply Supported
Circular Plate 62
a2=0.3

Annular Plate
a= ¢ 63

-
membrane

jtbending
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Members
36

72

84

50

50
128

110

50

64

128

50

110

Idealization

Degrees of Freedom

121

299

266

153

153

387

320

115
200

152
256

144
387

60
153

132
332

o8

Nodes
49

91

56

36

36
81

72

66

81

81

36

72

Increments
Required for Solution

469

270

200

170

206
196

120

241

72

133

270

121

Time in
Min.

6.89

14.02

14.49

7.05

27.70

12.94

12.80

72.3

43.3

59.6



APPENDIX L

ESTABLISHMENT OF LOCAL COORDINATE SYSTEM
AND COORDINATE TRANSFORMATIONS

One of the major requirements of the incremental geometric
nonlinearity analysis is the establishment of the current local
coordinate system in which displacements in the next incremental
step are to be determined. For a beam element this task is
simple. The new local longitudinal axis is directed along the
actual current axis of the beam element. The transverse axis is

perpendicular to it and directed toward the bottom fibers of the
beam (see Fig. 79).

The transformation matrix relating the displacements re-
ferred to local and global axes may be written as

{Adc}ﬂ - (1] {Ad(}g (L.1)

where the subscripts / and g vrefer to local and global co-

ordinate axes, respectively. For the beam element, Eq. (L.1) is
written as

Aw cos 6 O ~gin 6 AW
AD Y= 0 1 0 AB (L.2)
Au sin 6 0 cos 6 AU

where Aw, A6, and Au represent the increments of lateral dis-
placement, rotation of the line element about the y-axis (slope),
and the axial displacement in the local system, respectively.

The barred quantities are the generalized nodal displacements in
the global system. We can also write
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where [/ 1s the current value of the element length. Values of
the global coordinates are obtained by summing the increments of
displacement Au and Aw at the nodes and adding them to the
coordinate values in the original configuration.

Since the transformation matrix [T] of Eq. (L.2) is an
orthogonal matrix, we can write the relationship between the in-
crements of nodal generalized forces {AP} in the local and
global axes as

AF
Z
J = -1 j = ¢ .3
lAP}g [T] 1AP}£ (1" | e (L.3)
AFX

where AF,, AMy, and AFy represent the increments of lateral

load, bending moment about the y-axis, and axial force in the
local system, respectively.

The establishment of a local coordinate system for the tri-
angular element is more complex than that for a beam element. In
the solution of pure bending and combined bending and stretching
problems, where geometry changes are neglected, the local system
is always parallel to the global system. However, in large-
deflection problems, due to the out-of-plane deformations (or
because of the original configuration in the case of a shallow
shell), no single coordinate system can be used to describe the
local behavior of the elements. Consequently, a decision was
made to keep the =x-coordinate of each local coordinate system
parallel to a side of the triangle (see Fig. 80a). In particular,
the 1-2 side of each element was chosen. The y-coordinate is
then selected to be perpendicular to the x-coordinate and in
the plane of the triangle. The =z-direction is perpendicular to
the plane of the triangle and its direction is determined through
the use of the right~hand rule. The location of the centroid of
the triangle, with respect to the global system, may now be de-
termined by using the relationships
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e M S
c 3
ST, Y,
Yo = 3 (L.4)
- zl + z2 + zi
Z -4
c 3

The global coordinates with origin at the centroid of the
element ("local-global" coordinates) are

i
Ml

]
™

Xi/c i c
Yi/C = Yi - yC (l = 1: 2: 3) (L'S)
Zile = %1 T Z¢

where the subscript 1i/c denotes the local-global coordinates.
Vectors in the direction of sides 1-2 and 1-3 of the triangle
may be obtained from

R12 = (x2 - xl)i + (y2 - yl)j + (z2 - zl)k = ai + bj + ck
(L.6)

ey

Rig = (kg = X)i+ (y3 - y)i+ (23 - z)k=di+ej+ £k

where a, b, ¢, ..., etc., are the corresponding terms in paren-
thesis, and 1, j, k are unit vectors in the direction of the

global X, y, z axes. A unit vector in the local x-direction
is then

_ ai + bE + CE
x Vv aZ + b2 + c2

(=1 |

= cos o1 + cos a,j + cos a3k . (L.7)
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Hence; angles <aj(i = 1, 2, 3) are defined to be the angles be-
tween the local =x-axis and global axes, as shown in Fig. 80b.

A vector in the direction of the local =z-axis_ may be ob-
tained from the vector cross product of Ris and R13@ A unit
vector in this direction is

(bf - ec)i + (cd - af)j + (ae - bd)k
.V/(bf - ec)2 + (ed = af)2 + (ae - bd)2

_ _ _ (L..8)
= cOoS vli + cos vzj + cos v3k . '

The angles <Yj are the angles between the local 2z and global

axes, as shown in Fig. 80c. A unit vector in the _y-direction
may be obtained from the vector cross product of u, and wuy

U =u Xu
v z X
N,i+ N,j + Nk
- 1 2 3 (L.9)

S a2+l +c2  / (bE-ec)? + (cd-af)? + (ae - bd)2

= coS Blz + cos 523 + cos BBE

where
N, = c(cd - af) - b(ae = bd)
N, = a(ae -~ bd) - c(bf ~ ec)
N3 = b{(bf - ec) - afcd - af)

and the angles f£; are the angles between the local y and the
global axes, as shown in Fig. 80d. All global coordinates may
now be transformed into the local system by using the known direc-
tion cosines
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[ cos a
1

cos 61

Ccos Yl

cos a,
cos 52

cos 72

cos a
cos B
3

CcOos TB

3

el

» 1

(L.10)

N

Thus the local=-global nodal coordinates Xifer Yifcr Z2ifc MaY

pe transformed to the local coordinates with origin at the cen-
troid of the triangular element.

be zero, and the x and y

element stiffness matrices.

The inverse relationship to that given in Eq.

written as

g | %1

N |

[ cos a
08 94

cOSsS O
08 9

cos Q
3

cos 51
cos Bz

cos 53

All local
coordinates are used to form the

cos Wl

cos v,

cOoSs YS J

z coordinates will

(L.10) is

(L.11)

z

The transformation of the global incremental displacements to

local coordinates is of the same form as Eq.

Au

Av

Aw

The transformation matrix of Eq. (L.12), denoted as
an orthogonal matrix.

[ cos a
1

cos Bl

cos vy

Thus,

cos a
2

cos 52

cos 72

[Tql’

cos O. |
3

cos 53

coSs 73

(L.10) . Thus,
Au
AV ) . (L.12)
Aw
(Tgl, is

is used to relate the local

to global components of the increments of the generalized forces
corresponding to the displacements of Eq. (L.12).
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Since the moments may be treated as vectors, they will
transform in the same manner as the displacements. Therefore,

AM% cOoS al cos a2 cos a3 AME
AM.y = cos Bl cos ﬁz cos 63 AM§ (L.13)
AMZ _ CcoSs vl coS Vz cos w3 | AME

Equation (L.l3) represents a relationship between three force
quantities. However, the displacement degrees of freedom asso-
ciated with these physical forces are the two slopes w,y, and

W, Since AM, must be zero (from plate theory), we can elimi-
nate the third of Eqs. (L.13). This last equatic. then gives

AME coSs vl + AM§ cos v,

a = - ( (L.14)

COSs 'Y3 )

where cos Y3 = 0 only if v3 = T/2; i.e., W,x and W,y are
very large compared to unity. Substituting for AME in the re-
maining two equations of Eq. (L.13) gives:

[ (cos o, cos v, : (cos a, cos v,
AM% - cos a, cos vl) ' - cos 05 cos 72) AM§
1 —
e o T T T o T (4.15)
AM& 3] (cos 51 cos Y4 | (cos Bz cos Yo AM?
| " cos B3 cos vl) | -~ ¢OS 63 cos vz)
or
J‘AM = [T ] JAM L.16
‘l m‘[ L] (nl)
£ g
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Using this as our guide, we write

Aw &5,_

s X X
[T_] . (L.17)

Aw,y AW 5

Since we have eliminated AM, from Eqs. (L.13), we do not
have an orthogonal transformation, i.e.,

' _ 2
[z 1'(T ] = [1] + 0(6%) .

where © is equivalent to the nonlinear terms (i.e., squares of
rotations) in the strain-displacement relations of Eq. (6). To
maintain a symmetric striffness matrix, we use the relationship

{AM} = [Tm]' {AM}ﬂ s (L.18)

g

fully realizing that the approximation involved requires the
slopes (actually total slope of the surface) to be small compared

to unity. Hence this analysis is limited to plates and shallow
shells.

The derivation of a relationship between curvatures in the
local and global systems is even more difficult. The three quan-
tities w,xx, Woxys Woyy in local coordinates must be expressed

in terms of eighteen gloEel quantlties (i.e., W,Xx xy yy
W’}EE’ W,yz, W,zz, u,f&, u,§§ P V,;{-i, coay V,E-Z-) if an exact
transformation of derivatives is made. This leads to unwieldly
stiffness matrices. Some approximations will be made in order to
obtain a suitable transformation relation for the curvatures.
These approximations are based on the nature of the theory used,

the element properties, and the types of problems to be solved.

We have from Eq. (L.12), recalling that [Td]' = [Td]“l,

=

Aw = Au cos Cq + AV cos 63 + Aw cos Y3 (L.19)
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Then,

AWy = {Au cos g + Av cos 63 + Aw cos v3),§ (L.20)
or, using the chain rule,

- _ = &, - 9%,,- 22
AW;§ = AW:X 3% + AW9Y a§ + AW’Z A (L”21)

Since we are dealing with linear transformation relations
between local and global coordinates, we have:

Xymm =

2% y’ﬁi = Zgme = 0 . (L=22)

- ~ - 3 ~
MWogg T MWoxx (§§ * 25w <g%>(§§ T ok (§§><§§>
iy (DD vy, (B oh, B e

- - - 2
+ A5 %z (%% <%§ + AW’yz <%%D(%§ A (%%) ‘

The final form of the expression for Aa,,n is obtained by sub-

stituting for Aw from Eq. (L.19) and recglling from plate

theory that Au, Av, and Aw are not functions of the 2z-coordi-
nate. In addition, since Au and Av are chosen to be linear
functions of x and vy, all second and mixed derivatives of

Au and Av with respect to X, y, and 2z are zero. Also,

ox
T = (o)
= = cos oy

s

= COS Bl s eesy etc.
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Therefore,

— _ i’ 2
Awgii = cOS Y3LAW3XX cos Ay + AW’Xy cos Gl cos 51 +

(L.24a)
Aw cos o, cos B, + Aw coszﬁ ]
’yx 1 1 *yy 1]
Following the same procedure, we find
- _ [
AW,§§ cos V3LAW’XX cos o, cos az + Aw,xy cos al ToS 52 +
(L.24Db)
Aw,yX cos a2 cos Bl + Aw’yy cos Bl cos 52]
= _ [
Aw,§§ = COS Y3[AW’XX cos a, cos a, + AW,Xy cos a, cos Bl +
(L.24c)
AW,YX cos o, cos 52 + Aw,yy cos Sl cos BZJ
AW, = = COS Y [Aw cosza + Aw cos o, cos B, +
’yy 317 ’xx 2 ‘xy 2 2
(L..244)

2. |
AW’yx cos a, cos 52 + AW’yy cos BZJ

Equations (L..24a) through (L.24d) represent the transforma-
tion of the in-plane curvature "tilted" by the angle v3. Thus
the transformation relations between curvature may be written as

{An}g = [TK]”l {Ax}ﬂ (L.25)

175



where

coszotl CcOS alcos 51 cos alcos Bl cossz1
1 cos 0,cos O, COS 0,cos 52 cos 0,cos Bl cos Slcos 52
il T a B a B s B B
cos a;cos @, cos a,cos B, cos a;cos B, cos Bcos B,
cosza cos o,cos B cos a,cos P coszﬁ
2 2 2 2 2 2 |
and
r A -~ ~
Aw’ii AW’xx
A"A_T’_ﬁ AW’Xy
LAK} = < > ; iAK} = < >
1 g AW, o 1 Z Aw,
yX
AW, - Aw
'Yy ’yy
\ o \ J

Once again [T, ]'[Tx] = [I] only for flat configurationmns.
For shallow configurations the error will be small. Thus, we use

fAK} - 1) fAK} (L.26)
and to maintain symmetry of the stiffness matrix,

o - o}

AP = [T 1" <AP (L..27)

1 K g X 1 £},

where (APy} represents the generalized nodal forces associated
with the curvatures.
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Finally, the over-all transformation matrix [T] of
Eq. (L.1) is written as
Au Av Aw Aw,}.E AW,? Aw’ii AW,y AW, e AW, o
Au
Av [T
Aw |

Aw,
[T] = 0

(L.28)
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(i) ® (21 -11/ 3150 -1/ 700 -1/ 300 22/ 1575 «1¢ 528 oF 1
4l ® 222 -13/ 6300 8/ 700 =1/ 300 =13/ 1575 1/ 3525 LY 1
212 # 221 ~13/ 6300 1/ 700 =1/ 300 =13/ 1875 17 528 0/ i
Lae * 122 =1/ 420 9/ 700 =1/ 150 -1/ 1085 3/ 175 a7 1
4el & 222 -13/ 1575 1/ 325 o/ 1 «13/ 360 1/ 210 17 so
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COEFFICIENTS OF L{1,J) FOR USE IN FORMING INITIAL

TABLE |

STRAIN MATRIX FOR RECTANGULAR ELEMENT {Cont.)

8791) §7029 {7530 {756} 17,5} 17261
Z % I5¥g ~§7 =37 g6 17 2% =17 20 =97 20 17 2%
LIRS =1/ 30 i/ 18 =37 109 0/ 1 LY -1/ %0
T % 412 -1/ &0 1 90 1/ 200 0/ 1 17 72 17 300
T =421 0/ 1 87 92 YA i/ 30 27 9 «3/ 106
T e 22 0/ 1 7 72 1/ 300 i/ 66 2/ % 17 290
111882 =3/ 1490 1/ a0 -1/ 50 =17 420 13/ 800 =17 100
L1282 -9/ 1400 i1/ 8%0 14 300 -1/ 1400 13712600 17 600
2z)e52 3/ 420 11/ 300 -1/ 100 37 140 37 20 -1/ %9
C dage®2 1/ 1400 11/ 6300 1/ 800 9/ 1400 1/ 140 1/ 300
213 ® 412 -3/ 175 17 10% o/ 1 -1 82% 137 1575 Y 1
111 % 423 -1/ 210 13/ 300 =37 S0 17 210 117 150 -1/  sp
11 & 422 =1/ 325 13/ 157% (Y 1 1/ 523 227 1575 0/ 1
12 ® L2} =1/ 525 13/ 1575 o/ 1 17 325 227 1575 0/ 1
ild ® L22 =1/ 700 137 6300 17 ° 300 i/ 790 117 3150 17 300
| 221 % 122 1/ 525 227 1578 o/ 1 3/ 175 27 3% Y4 1
‘ §707) ﬁ&hal §7.93 § 724 §7:330 §7.328
[™"Z & 1882 177 30 7 1 =17 24 =1/ 3 0/ 1 -1/ 2&
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T % .21 o/ 1 1/ 12 1/ 300 1/ 60 27 &8 1/ 200
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Leiwn2 1/ 1050 =11/ 1050 1/ 200 3¢/ 350 -3/ 70 1/ 106
il ® 212 -9/ 700 1/ 420 1/ 150 =314 700 137 e300 17 389
21 % ¢21 -1/ 525 137 1575 0/ 1 17 s25 22/ 1575 0/ 1
L3} % 122 =1/ 700 137 6300 1/ 300 1/ 700 11/ 3150 1/ 309
dile ® 221 -1/ 700 137 8300 17 300 17 700 117 3180 17 306
412 ® L322 -1/ 525 =13/ 1050 1/ 100 1/ 52% -11/7 325 1/ 100
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T % .21 -1/ 180 =1/ 712 1/ 600 -1/ 38 -17 3 -1/ 149
T 222 -1/ 360 -1/ 360 -1/ 3600 -1/ 72 -1/ 180 1/ 600
L1le%2 1/ 21p -3/ 150 17 2ne =1/ 1260 =17 200 17 &0n
12892 1/ 700 =31/ 3150 =17 1200 =1/ 4200 =1/ 4200 -1/ 3696
Lelea? =3/ 315 =1/ 150 07 1 -1/ 60 17 80 ~17 199
Lei%w2 -1/ 1050 ~14 3150 0/ 1 -1/ 200 -1/ 1260 17 &nn
151 & 212 2/ s2% =&/ 1575 0/ 1 =1/ 1375 -1/ 525 Y 1
i) & £21 =1/ 630 =1/ ' 190 1/ 300 -2/ 318 YRR ar 1
(i3 % 222 -3/ 1573 -4 528 0/ 1 -4/ 1573 =&7 1575 o/ 1
442 & 421 -1/ 1575 -3/ 525 0/ 1 &/ 1573 47 157% a7 1
Lie ® 422 =17 2100 -1/ 2100 ~1/ 1800 -1/ 52% -1/ 187% 07 1
el ® 422 ~&/ 1575 ~&/ 1575 Y 1 -1/ 75 -2/ 31% 0/ 1
§8-7% %8.8) §8095% {83058 {8,810 [
< (3 0/ 1 7 1 1/ 166 17 30 87 1 -1/ 144
T % 411 17 380 -1/ 380 =1/ 900 =17 3860 -1/ 360 -1/ 36080
T % 412 1/ 360 17 360 -1/ 225 -1/ 380 17 380 -1/ 900
T %421 -1/ 380 =317 386D =1/ 3600 -1/ 72 -1/ 18p 1/ o006
¥ % 222 -1/ 360 1/ 380 =17 900 =3/ 72 1/ 180 17 156
Lilweg 1/ %2% w2f 1575 Yy 1 =1/ 3150 -17 1350 67 1
L1gw®2 17 525 1/ 525 =14 400 -3/ 3150 17 700 -1/ 1200
Letes2 =2/ 1575 -2¢ 1575 o/ 1 -1/ 150 =37 313 Y
L2en%2 =2/ 1575 i/ 525 o7 1 =1/ 150 17 210 1/ 206m8
el % 232 1/ 350 -1/ 1575 -1/ &80 -1/ 2100 =1/ 2100 -1/ 1860
i3 * 423 -1/ 1575 =1/ 2% o/ 3 &/ 1575 &7 1575 0/ 1
il ® 222 -14 2100 «1/ 2100 «~37 1800 -1/ 528 -1/ 1575 o/ 1
112 ® (21 -1/ 2100 -3/ 2199 -1/ 1869 -3/ 925 17 1875 LY, 1
112 ® 222 -1/ 1575 1/ 350 -1/ 600 -4/ 13578 2/ 525 o/ 1
idd # 422 -1/ 523 -1/ 1575 0s 3 =17 00 =17 630 17 300

189



TABLE |
COEFFICIENTS OF L(1,J) FOR USE IN FORMING INITIAL
STRAIN MATRIX FOR RECTANGULAR ELEMENT (Cont.)

92311 {922 (2:23) 'ﬂgigﬁ

VEE I8 CL7 =57 &8 Y/ 26 -1/ (3 %‘?"’uﬁ“‘“‘ﬁﬁ !W -1/ Y
T » <11 1/ 18 -&f 18 9/ 100 Y4 1 -1/ 12 3/ 56
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Légh®2 ~11# 2100 13/ 4200 1/ 100 =337/ 700 17 280 1/ 59
dal = 212 39/ 700 -3/ 10 17 2% 137 2300 |-21/ 10%0 17 %6
sha ® £21 1 140 |-337 350 7 23 =17 140 |~-36/ 700 17 25
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Lei*s2 -13/ 4200 | <137 4200 1/ 100 -39/ 1400 =17 280 17/ S0
Lei¥%2 =37 140 39/ 1400 1/ S0 =277 140 9/ 280 7/ 25
441 # ¢12 33/ 250 3/ 710 i/ 25 11/ 1650 131/ 1950 1/ 8B
eil » L21 13/ 2100 {-11/ 1050 1/ 50 =137 2100 |~13/ 2100 1/ %0
L4l % 222 117 1050 117 1050 1/ 80 =117 1050 13/ 2106 1/ sa
£02 % 221 11/ 1930 11/ 1050 i/ %9 =117 1050 13/ 2100 17 %9
a2 # £22 ¥ 70 33/ 350 1/ 25 -3/ 10 397 700 i/ 25
ecl ® 222 =11/ 10%0 137 2100 1/ 56 =337/ 350 1/ 140 i 28
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La4¥82 1¥4 %0 =37 140 =17 50 17 210 =37 3%0 07 i
LAcH®2 i1/ 300 17 420 =17 100 117 1%7% 17 10%0 07 i
LL4%%2 1/ 840 =9/ 1400 1/ 300 =17/ 140 «37 3%0 17 ind
L42%%2 il/ s300 1/ 1400 1/ 600 =117 1050 17 1056 1/ 200
4a) % 212 13/ 300 -3/ 210 =17 50 137 1875 =37 528 07 1
411 ® <23 1/ 105 <3/ 175 0/ 1 17 4290 -9/ 700 7 189
411 ¥ ¢22 137 1575 =1/ 528 o/ 1 137 67290 -1/ 700 17 300
the * 221 137 1578 «~37 525 (4 1 137 6300 =17 700 i7 300
Lle % ¢22 22/ 1575 1/ 528 o/ i 117 31%0 17 700 1/ 308
ead ¥ £22 137 6300 -3/ 700 -1/ 300 =137 1050 =37 8525 17 169

e 00 e B U002) FTISTTNIE ST N VLT .

B 5 “1, 3/ i - - )
T & 411 54 72 0/ i =1/ 50 1 ¥ 72 07 ) 17 306

T = (12 24 9 is 30 -3/ 100 27 4% 1/ &0 i/ 200

T & 4l 1/ 72 o/ 1 1/ 300 =1/ 72 o/ i 17 7

T = 422 24 45 i/ &0 1/ 200 =27 %% §7 80 17 56
L13%®2 137 600 =37 420 =3/ 100 337 3150 -7 1350 (74 1
L2282 3/ 20 3/ 140 -l s b-14] ¥4 33 3/ 350 67 i
La)382 13712600 «if 1400 i/ 600 =135 2100 =17 1050 17 2060
L22%%2 17 140G 8/ 1400 1/ 300 14 70 3/ 350 17 100
413 ® 212 11/ 150 i/ 219 =14 50 227 1575 17 825 57 i
43d & 421 137 157% -1f 523 67 i 134 6300 =3/ 700 17 366
el & (22 227 1575 1/ 525 o/ i 117 3150 s 700 17 306
dle & L21 227 1578 i4 5835 Gs i 117 3136 14 700 s 1300
dlé = £22 2/ 35 3/ 175 o7 1 | ¥4 70 9f TOO 17 159
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COEFFICIENTS OF L{1,J) FOR USE IN FORMING INITIAL
STRAIN MATRIX FOR RECTANGULAR ELEMENT (Cont.)

] (1141) 41102}
Fow 41l -1/ 60 21 45
T e 432 -1/ &0 -2/ 45
T % 421 o/ 1 17 72
T e (22 o/ 1 =3/ T2 =3/ 300 1/ &0 =37 0 -1/ 209
11)e%2 3/ 350 3/ 70 =i/ 100 =1/ 1050 117 1050 -1/ 200
Lr2ss2 -3/ 350 -1/ 38 0/ 1 -1/ 1050 -117 1578 as 1
21892 1/ 1050 13/ 2100 -17 200 3¢ 350 17 180 -1/ 100
deien2 1/ 1050 =13/ 3150 0/ 1 3/ 350 17 210 a7 1
211 % 212 -9/ 700 -1/ 70 -1/ 150 -1/ 706 |-117 3150 -1/ 360
1) % ¢21 -1/ 528 11/ 525 =1/ 109 i/ s2% 13/ 1050 =17 100
L1l ® 22 -1/ 700 =117 3150 =17, 300 17 700 |=-137 8300 -1/ 300
Lle » c21 -1/ 700 ~11/ 3150 -1/ 300 1/ 700 13/ 6300 =317 30M
Li2 ® 422 -1/ 525 ~22/ 1575 o/ 1 1/ s2% 13/ 1575 07 1
lg) * 22 1/ 700 ~13/ 6300 -1/ 300 9/ 760 =1/ 420 17 150
111,74 111,489 {1159} 111,108 §33-11) 4311121
rant i k4 17 riij 17 r{'j =17 riy =17/ %0 37 20 -17 26
T » ¢ll S YY) «2/ &5 -1/ 200 o/ 1 -1/ 72 -1/ 300
T # cl2 -1/ 30 -2/ 9 3/ 100 o/ 1 -8 72 17 50
T % (21 o/ 1 -1 712 -1/ 300 1/ &0 «17 90 -1/ 200
T % (22 o/ 1 -5/ 72 1/ 50 1/ 30 -1/ 18 37 100
Liien2 -9/ 1400 -1/ 140 =1/ 300 =17 1490 |-=117 6300 -1/ 6n0
242982 ~3/ 140 -3/ 20 i/ 50 =17 420 =114 300 17 1nn
L2an%2 1/ 1400 =~13/12600 -1/ 600 9/ 1400 =17 840 «17- 300
L22%%2 1/ 420 =13/ 600 1/ 100 3/ 146 -1/ & 17 o
Llh ¥ £12 -3/ 175 -2/ 3% o/ 1 -1/ 5285 |-227 1575 o/ 1
211 % (21 -1/ 700 ~11/ 3150 -1/ 300 1/ 700 =13/ 8300 -1/ 300
431 % (22 =1/ 525 ~22/ 157% 0/ 1 17 525 |=137 1578 Y] 1
Lle % (21 -1/ 525 =22/ 1575 o/ 1 17 %25 =137 1578 ‘ng 1
112 % (22 -1/ 210 =31/ 150 1/ 5o 17 210 =137 300 17 se
Lis ® £22 i/ 525 ~13/ 1575 o/ 1 3/ 178 -1/ 108 ay 1
11242 {1242} 11203} 112,4) 112,5) §1206}
e ¥ 1882 17 30 07 1 =17 14& o7 1§ “B7 1 Y7 144
T # (11 -y T2 1/ 180 1/ 150 -1/ 380 1/ 360 -1/ 999
T % cl2 -1/ 72 -1/ 180 17 600 =17 360 -1/ 380 17 3600
T ox 421 -1/ 380 1/ 360 -1/ 900 17 360 -1/ 360 -1/ 22%
T % 422 -1/ 360 -1/ 380 -1/ 3600 17 380 -1/ 380 -17 90n
2118%2 -1/ 150 1/ 210 1/ 200 =27 1578 1/ 525 Y 1
L4l¥%2 -1/ 150 -1/ 315 o/ 1 -2/ 1575 -27 1575 o/ 1
PPSLE Y] -1/ 3150 1/ 700 =1/ 1200 i/ 525 17 528 =17 600
Le2¥%2 -1/ 3150 -1/ 1050 0/ 1 1/ 525 -27 1575 0/ 1
€1l % 212 -1/ 100 ~1/ 630 1/ 300 -1/ 525 -1/ 1575 s 1
ell & (2} ~-&f 1575 2/ 525 of 1 -37 157% 17 350 =17 60O
L1) * £22 -1 8525 =1/ 1575 o/ 1 -1/ 2100 -1/ 2100 =17 1809
ii2 + (21 -1/ 525 -1/ 1575 o/ 1 -17 2190 -1/ 2100 -1/ 1899
i12 ® 222 ~&f 1575 =44 1575 LY 1 -1/ 157% -1/ 325 0/ 1
il = (22 -1/ 2100 «1/ 2100 -1/ 1800 17 350 -1/ 1578 -1/ &np
(12,7} 112,89 £312,9) 441%2.10) 112,311} 112,12}
e 3 1882 17 20 17 YA L 7 T 17 36 =17 144
LAY -y 72 =1/ 180 1/ 600 -17 360 -17 380 -1/ 3806
T % {12 -1/ 36 -1/ 36 -1/ 100 -1/ 180 «1/ 72 17 6
Tow (2 -1/ 360 -1/ 360 ~1/ 3600 17 360 «17 380 ~17 9nn
T ® (22 -1/ 180 -3/ 72 1/ 600 17 180 -17 712 7 159
211822 -1/ 200 =1/ 1260 i/ 600 -17 1056 =17 3189 07 1
L42%%2 -1/ 60 -1/ 80 -1/ 100 -1/ 315 -1/ 150 LY 1
L24%%2 -1/ 4200 -1/ 4200 -1/ 3600 1/ 700 =14 3150 -3/ 1200
L22%%2 -1/ 1260 -1/ 200 17 600 1/ 210 =17 150 17 200
211 % 212 -1/ 73 -2/ 315 07 i &) 1575 &7 157% 'Y 1
1) % (2% -1/ 525 -1/ 1575 o/ 1 -1/ 2300 =1/ 2100 -17 1800
1L & 122 -4/ 1575 =67 1575 07 1 17 1578 -1/ 528 Y 3
Zi2 % L21 -47 1575 -4/ 1575 o/ 1 -1/ 1575 1/ 528 4 ]
11 % 422 -2/ 315 -17 75 o/ 1 -3/ 630 -1/ 100 1/ 30n
L) ¥ £22 -1/ 1575 -1/ 525 ors 1 2/ 525 &/ 1573 o/ 1
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COEFFICIENTS OF L(1,J) FOR USE IN FORMING INITIAL
STRAIN MATRIX FOR RECTANGULAR ELEMENT (Cont.)
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el & 222 13/ 2100 =313/ 1050 -1/ 80 397 700 =37 78 <19 2%

(13,7} 113,88 11309 §13,10) (13,31) £13,128

TETREY L A =37 40 T7 % -77 20 =¥/ 20 17 [
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4 ® Tex2 [ X4 ) =17 - ’ -

T %411 17 90 1/ 60 17 50 =1/ 90 17 &0 1/ 200
T e ¢l2 i/ 72 o/ i w s =17 72 67 i 17 300
T % L28 =/ 90 17 &0 1/ 200 -1/ 16 1/ 30 =37 100
T % 422 =17 72 0/ 1 17 300 -5/ 12 os 1 =1/ 50
Lilssg i/ 140 3/ 350 1/ 100 =17 840 9/ 1400 1/ 300
112982 117 1050 =1/ 1050 17 200 =117 $300 =1/ 1400 1/ &nn
LeA®¥2 =17 210 3/ 350 0/ 1 =1/~ 46 3/ 140 =1/ 50
422632 =317 1575 =37 1050 0/ 1 =11/ 300 =1/ 420 -1/ 100
des * (12 137 1050 1/ 52% 1/ 100 =137 6300 1/ 700 17 300
431 % ¢21 =17 420 97/ 700 v 159 =17 108 37 178 ny 1
434 B L22 =13/ 6300 1/ 700 1/ 300 =137 1575 1/ 525 74 1
£id % (21 «13/ 6300 1/ 700 17 300 =137 1578 1/ 52% a7 1
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T % 221 -/ 72 o/ i /7 300 =57 72 07 1 -17 50
T * c22 =24/ 48 =1/ &0 17 200 -2/ 9 =i 36 =3/ 100
[2YLLr] 13/ 23100 3/ 103%0 17 209 -13/12600 17 1632 17 690
£32882 3 70 -3/ 350 17 100 «17 140 =9/ 16400 17 380
Les®82 =137 3150 17 1050 0/ ) =13/ 600 17 420 =17 118
Leéw%2 =17 35 =37 350 07 ) =37 20 =3/ 140 =17 30
431 % (12 117 %25 -1/ 525 17 1006 =137 3150 =15 700 17 306
2id ® £21 =13/ 6300 1/ 100 i/ 300 =13/ 187% 17 3525 07 1
444 422 =11/ 3150 -4/ 700 i/ 300 =22/ 187% -1/ %23 67 1
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COEFFICIENTS OF L({I1,J) FOR USE IN FORMING INITIAL
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Ldack®2 2/ 1573 2/ 1573 o7 i 1/ 150 17 318 o7 )
a3y # 012 -1/ 350 1/ 1575 =37 600 1/ 2100 i/ 2100 67 1
ehh ¥ L21 1/ 1575 -1/ 350 =1/ &C0 &7 1378 «27 52% 0/ 1
Lar * £22 1/ 2100 17 2100 =17 1800 17 325 17 1378 07 3
Lie B (2} 17 2120 i/ 2100 -1/ 1800 17 525 17 1578 LiT4 i
erd ® L 22 1/ 1578 7 528 07 3 &7/ 157% &7 1578 L4 1
) ® L22 -1/ %25 i/ 1575 o/ 1 1/ 106 1/ 630 1/ 306

i’bg?! (;Gili) {1698 (1;5!2! ]lslll! 11623125
& B jea2 } - =57 1&% =1 - 17 144

T % 411 -1/ 360 1/ 360 =17 90C 17 360 17 360 =1/ 3608
T = ¢cl2 -1/ 180 1/ 72 i/ 150 17 180 v T2 1/ 6#00
T % ¢21 17 360 1/ 360 =17 3600 7 72 i/ 180 17 800
T = c22 1/ 180 1/ 72 1/ 600 i/ 38 17 36 =1/ 1n0
L1132 =1/ 700 17 3150 =1/ 1200 17 4200 17 4250 =1/ 3600
L4a¥R2 =1/ 210 i/ 1%0 17 200 17 1260 17 ao¢ 17 66%
cai®®g 1/ 1050 17 3150 o/ i 17 208 1/ 1260 17 &00
Laz®®2 17 315 i/ 150 07 i 17 60 17 &0 =1/ 109
ell ® 412 -2/ 525 &/ 1575 o/ 1 1/ 1578 1/ 528 67 i
Lal ® 221 17 2120 1/7 2100 -1/ 1800 17 32% 14 1575 ng
4ah ® L22 1/ 1575 1/ 525 e/ 1 &7 1575% :/ 157% Ll 1
fs2 » 221 1/ 1575 17 525 o7 1 &/ 1575 7 1578 L4 1
Lle ® 222 1/ 535 17 100 17 300 2/ 318 /ll kAl (24 !
ded ® 222 &/ 1575 &/ 1575 0/ 1 17 75 2/ 315 07 i
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TABLE 2

'COEFFICIENTS OF LY (1,J) AND t4,(1,J) FOR USE IN FORMING
INITIAL STRAIN MATRIX FOR RECTANGULAR ELEMENT,

U L
L L (ls21) (1s2) (143) (1s4) (155) (1s6)

M M

0 T J=1/ 1 0/ 1 -1/ 1 =1/ 1 0/ 1 -1/ 2
zull  =zL1L =1/ 4 G/ 1 =1/ & =1/ 8 0/ 1 =1/12
ulz2  =zL12 |[=1/12 0/ 1 =1/ 8 -1/24 o/ 1 =1/24
U2l  =zi2l ||=1/ 8 0/ 1 -1/12 -1/ 4 0/. 1 =1/12
22 =2L22 |=1/24 0/ 1 =1/24 -1/12 0/ 1 «1/24

|
(157) (158) (1:9) (1510) (1s11) (1512)
(

0 T =1/ 2 s 1 -1/ 1 -1/ 2 0/ 1 -1/ 2
Zull  =ZL11 ||=1/12 0/ 1 -1/ 8 -1/24 0/ 1 -1/24
ulz  =zL12 |=1/12 o/ 1 -1/ & -1/24 0/ 1 =1/12
Zu2l  =ZL21 (=1/24 0/ 1 -1/24 -1/12 0/ 1 =1/24
U222  =ZL22 ﬂ-1/24 0/ 1 =1/12 -1/12 0/ 1 =1/12

U L :

L L (2s1) (2s2) (2+3) (296) (255) (246)

M M

0 T fos =1/ 1 -1/ 1 0/ 1 -1/.2 «1/ 1
zull  =z.l1l Jos 1 =1/ 4 ~1/ 4 0/ 1 =1/12 -1/ 8
v1iz  =ziL1z flos 1 =1/ 8 «1/12 0/ 1 =1/24 =-1/24
zu21  =zL2l jfos 1 =1/12 -1/ 8 0/ 1 =1/12 =i/ 4
2v2z2  =zL22 [l os 1 =1/24 ~1/24 0/ 1 -1/24 =1/12

(257) (208) (259) (2910) (2511) (2512)

0 T fos1 1/ 1 =1/ 2 0/ 1 -1/ 2 -1/ 2
Uil =zL11 o/ 1 =1/ 8 =1/12 0/ 1 =1/24 =1/24
zZulz  =zt1z2 fos 1 -1/ & =1/12 0/ 1 =1/12 «1/26
vzl =zL2l jos 1 -1/24 =1/24 0/ 1 -1/24 =1/12
u2z  =zL22 J o/ 1 =1/12 =1/24 0/ 1 =1/12 =1/12
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COEFFICIENTS OF LY(1,4) AND Lk (1,J) FOR USE IN
FORMING INITIAL STRAIN MATRIX FOR RECTANGULAR

TABLE 2

ELEMENT (Cont.)

¥ L
b L {3e1) (3:2) (3s3) (3e4) (3:5) (3:6)

M M
4] T 17 1 0/ 1 =1/ 2 17 1 07 1 =1/ 1
Zull =7Ll1 1/ 4 Grs 1 =1/12 ls 8 0s 1 =1/12
Zyl2 =712 1712 0/ 1 =1/24 l/24 0/ 1 =1/24
Zuzl =721.21 ls 8 O/ 1 =1/12 17 &4 0/ 1 =1/ &
YAS Y-V «Z.22 1724 0s7 1 =1/24 1712 0/ 1 =1/ 8
(367) (3+8) (3:9) (3s10) {(3s11) {(3512)
0 T 17 2 0/ 1 =1/ 2 17 2 0/ 1 ml/ 1
Zull YA 1712 0/ 1 =1/2% l/24 0/ 1 =1/24
2ulz2 =712 1712 O/ 1 =1/12 l/724 07 1 =1/12
FARY DY =21.21 1724 07 1 =] /24 1s712 07 1 =1/ 8
22 =222 1724 0/ 1 =1/12 1724 0/ 1 =1/ &4

U L
L [ (4sl) (452) (493) {4354) (495) (496)

M M
0 T o/ 1 -1/ 2 1/ 1 0/ 1 -1/ 1 1/ 1
ZUll =Zi11 o/ 1 =1/12 17 4 0/ 1 =1/12 l/ 8
2ul2 =21L12 0/ 1 =1/24 1712 0/ 1 =1/24 1724
Uzl =ZL21 0/ 1 =]1/12 1/ 8 0s 1 =1/ & 1712
22 wZl.22 07 1 =1/24 /724 0s 1 =1/ 8 1712
(457) (448) (489) (4:10) (4811) (4512)
0 T 07 1 =l/ 2 1/ 2 0/ 1 =1/ 1 17 2
ZUll -Z2L11 0s 1 =] /24 1712 Q7 1 =1/24 1724
Zul2 =ZL.12 i 0/ 1 =1/12 1712 0/ 1 «=1/12 1724
U2l =721 0/ 1 =1/24 1724 Qs 1 =1/ 8 1712
U222 «Zl22 0/ 1 =1/12 1724 o/ 1 =1/ & 1712

195




COEFFICIENTS OF ﬂ&{LJ)AND Lh@hd)?@ﬁ USE IN
FORMING INITIAL STRAIN MATRIX FOR RECTANGULAR

TABLE 2

ELEMENT (Cont. )

v L

L L (501) (552) (553) (554) {565) (556)

M M

0 T -1/ 2 0/ 1 1/ 2 -1/ 2 0/ 1 1/ 2 |
Zull  =ZL11 || =1/12 0/ 1 1/ & -1/24 0/ 1 1712
VlZ  =zL12 ||=1/12 0/ 1 1/ 8 =1/24 0/ 1 1/24
2u2l  =zL21 || =1/24 0/ 1 1712 =1/12 o/ 1 1/12
Y22 =zL22 || =1/24 c/ 1 1/24 -1/12 0/ 1 1/24

(557) (548) (559) {5510) (5511) (5512)

o T f{=1/ 2 0/ 1 1/ 1 -1/ 1 0/ 1 1/ 2
Zull =zLll [l =1/12 0/ 1 1/ 8 -1/24 0/ 1 1726
Zulz2 =zL12 | =1/ & o/ 1 1/ & -1/ 8 0/ 1 1/12
zuz2l  =zL21 || =1/24 0/ 1 1724 -1/12 0/ 1 1724
Zuz2z  =z2L22 -1/ 8 o7 1 1712 -1/ &4 0/ 1 1/12

(W] L .

L L (691) (642) (633) (634) (655) (6+6)

M M

0 T 0/ 1 171 -1/ 2 071 172 =1/ 2 |
ZUll  =ZL11 0/ 1 1/ 4 =1/12 0/ 1 1712 =-1/24
iz =z2L12 0/ 1 1/ 8 =1/12 0/ 1 1/24 wl/24
U2l =z121 0/ 1 1/12 «l/24 0/ 1 1/12 «1/12
2U22 =2L22 0/ 1 1724 -1/24 0/ 1 1/24 -1/12

(657) (648) (699) (6+10) {6511) (6512)

0 T [ Y2R! i/ 01 =17 1 0/ 1 1/ 2 =1/ 1
ZUll  =ZL1ll 0/ 1 1/ 8 -1/12 0/ 1 1/724 -1/24
ui2  =z2L12 0/ 1 1/ 4 =1/ & 0/ 1 1712 =1/ &
zuzl  =zL21 0/ 1 1/24 -1/24 0/ 1 1/24 -1/12
Zvzz _-zL22 | 0/ 1 1/12 =1/ 8 0/ 1 1712 =1/ 4
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COEFFICIENTS OF tY(1,4) AND LY, (1,J) FOR USE IN
FORMING INITIAL STRAIN MATRIX FOR RECTANGULAR

ELEMENT (Cont.)

TABLE 2

U L
L L (Tsl) (7s2) (7:3) {(7:24) {7:5) {7:6)

M M
0 T 17 2 G/ 1 l7 2 i/ 2 Cs 1 171
ZUll =ZLil 1712 0/ 1 1712 l/24 07 1 1712
Zulz =Z1.12 1/12 0/ 1 1724 1724 0/ 1 1724
Zuzl =Z1.21 1724 0s 1 1712 1712 0/ 1 17 4
rAVY Y] =222 1724 07 1 1724 1712 0/ 1 1/ 8
(797) (7:+8) {7s9) (7510) (7511) (7912)
0 T 171 s 1 l/ 2 171 Qs 1 i/ 1
Zull =ZL11 is12 O/ 1 1/724 1724 0s. 1 1724
ulz =ZL12 1/ & 07 1 1s712 ls7 8 07 1 1712
Zuzl =ZL21 l724 Gs 1 l/724 1712 07 1 1/ 8
Zu22 -Z21.22 1/ 8 s 1 1712 1/ & 07 1 L/ 4

U L
L b (8s1) (bs2) (853) (8e4) {8s5) {856)

M . M
0 T T 0s 1 ls 2 17 2 0/ 1 17 1 17 2
ZUll =ZL11 0/ 1 1712 1712 0/ 1 1712 1/724
Zulz =112 07 1 L/24 1712 0/ 1 1724 1/724
U2l =ZL21 0/ 1 1712 1724 6/ 1 17 & 1712
Zu22 ={1.22 07 1 1724 1724 0/ 1 17 8 1712
(8s7) (8.8) {899) (6:10) (8511} (8512)
0 T 0/ 1 17 2 17 1 07 1 17 1 1/ 1
2Ull =ZL1il 0/ 1 1724 ls12 07 1 1724 1/24
Zula =212 o/ 1 lr12 1/ 4 0/ 1 1712 1724
Zuzl =Zl.21 07 1 lrs24 1/24 0/ 1 l7 8 1712
uie =22 lﬁO/ i 1712 i/ 8 0/ 1 17 4 17 4
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Fig. 1. SIX NODE TRIANGULAR FINITE ELEMENT

Fig.2. DISTRIBUTION OF PLASTIC STRAIN
INCREMENTS



h=0.162"

5" +}———‘§\P p=1.672"

Ky= 2.0

Fig.3 NOTCHED BAR I

Material: 2024-T3 Al.Al.
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127 Elements
284 Nodes
542 Degrees of freedom

-

Fig.4 FINITE ELEMENT IDEALIZATION OF QUADRANT
FOR NOTCH BAR T
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Notch KT =2

Linsarly Varying Strain

Elemsgnt AP=]
Elastic-Unlimi

00 Ib
ted

60

A

50

(117
/

4oStrain Hardening
o | %0 | L]

o LN
REIATAN AN
;: 519 -l/ -lp/ -'/ /‘/ / li) 7/L|(5mll szigui“lozi
EP T T TR T
// A// // // // 7/ 7/V/ e
-30 \

-40 / / / // J/ 3 \@//. Stress, strain

s / / W .//\ ® Residual stress,

= g

Fig.5 NOTCHED BAR I: LOCALSTRESS-STRAIN CURVE AT NOTCH
ROOT FOR FIRST CYCLE OF REVERSED LOADING

exp. Ref. 26.
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Notch Ky =2

N
(@]

Linearly Varying Sirain
Element

AP =1001b.

o
\
\
\
., 3 \
ERNY

o}:ol Sirain x 10
|\
\
\
Y
\
\
\
\\\

Elastic Unlimited Strain 10— /,.’:_1- """""" A/
Hardening S VT //,
///. """"" P //
. ,’é. """ ’//
4 ,/i, -~ 8 //
,//.."" / e
L o
-7 -6 -5 -4 -2 2 /3 4 5 6 7
Load, kips v L7
P 7 -5 //,-"' 4 Ist cycle:
o 2% nd from
v A //’3 /,f_f.ﬂ"' s 277 cycle t oxperiment Ref 26.
—= //_..,..rf p - 3'd cycle
P - =
/7. = // |51 St cycle
AT o nd from
37' .......... e 277 cyele topqlysis

-?_oJ ____________ 3rd cycle

Fig.6 NOTCHED BAR I: THREE CYCLE LOAD vs.STRAIN CURVE

AT NOTCH ROOT Smax =50 ksi



2.2 T T T

e e from Ref. 26
2.0= Y“\\

\\\\ ————— from Analysis |

NS

8
)
=]
(T8
e
L 3
§ \ \\\\
= \ & |
o 1.6 \ N
] Rl
[ & ] \\
w 14 NS
:; \
el K'
- P
" 2 K
P
1.0

0O 10 20 30 40 50 60 70 80 90 100
Nominal Stress Range , AS ksi

Fig. 7. NOTCH BAR I: PLASTIC STRESS CONCENTRATION FACTOR
AT NOTCH ROOT vs. NET SECTION STRESS RANGE.
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26 S50

S=24
— = 35 44

{(a) First cycle of loading (b) First cycle of unloading and reversed loading

Fig.9 NOTCHED BAR I: GROWTH OF ELASTIC- PLASTIC BOUNDARY
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A Material

2024-T3 Al Al.
h=0.155"
p=0.300"

800t | (7740

350"

- p, radius

«——1].90—>

Y l l l Y
Fig. IO NOTCHED BAR II
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144 elements
327 nodes
620 degrees of freedom

_a&}l /
!

Fig.1l FINITE ELEMENT IDEALIZATION OF QUADRANT OF NOTCHED BAR I
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7 —
y i
A —T TN T _f
6.— I
i
I
|
5, l— ]
Lo X
zo
a |- s ]
-g_i- ——————— Linear strain triangle (L.ST) ,'
o 3l Constant strain triangle (CST) i
Ow = Free Field Stress )
2.1—
= ———
o | | | |
' 2 3 4

% (in)

Fig. 12 NOTCHED BAR II, COMPARISON OF DISTRIBUTION OF NORMAL
STRESS RATIO FOR CST AND LST TRIANGLES
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[« ]
(o]

& Experiment| Ref 27

(]

B
£

Residual Stresses
& Experiment
o Analysis

D
Local striess o, ksl
N
©

-20 =I5 =10 -5 L3 10 | 2¢
Locaj strain e x Ip3

M
(0]
\

A /

/ e /
A
/ x b & j—-/::/

Fig.13 NOTCHED BAR IL: LOCAL STRESS vs STRAIN AT NOTCH ROOT FOR FIRST CYCLE
OF REVERSED LOADING
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Notch IL Ky =4
Linearly Varying Strain Element

12}
AP =25 Ib 2
Elastic Unlimited Strain Hardening £
o
)
©
(3]
o
-4
i

from experiment
Ref 27.

from analysis

;‘:..n \D s}

Fig.14 NOTCHED BAR I - THREE CYCLE LOAD vs STRAIN CURVE AT NOTCH ROOT
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Stress conceniration facior

O Experiment Ref 27

io 20 30

Nomina!l siress range, AS kst

Fig. 15 NOTCHED BARIL: PLASTIC STRESS CONCENTRATION FACTORS AT
NOTCH ROOT ve NET SECTION STRESS RANGE

40

50

A
6
Oy = 7550 psi TY m
Oy = 12100 psi [A/:
O = 16900 PSi m—em e e ! X,
'
a
AT
% /i
T {i
I
[
Iy
2 p
‘M
0
0 L Xin) 2 3 4

Fig.16 MOTCHED BAR IL - DISTRIBUTION OF NMORMAL STRESS RATIO Ty / Cgn

ALONG AXIS OF SYMMETRY,y=0
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S =25 ksi

r"—-S= 12.5 ksi

(a) First cycle of loading

»<"5:-25 ksi
\——S= -12.5 ks
o

(b) First cycle of uniloading and reversed loading

Fig. I7 NOTCHED BAR Il : GROWTH OF ELASTIC-PLASTIC BOUNDARY



Pttt
35.0" Material 2024
-T3 Al Al
I"radius ————S h =0.155"
e 11,90 —~
I

Fig.18 RECTANGULAR SHEET WITH A
CENTRALLY LOCATED HOLE
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134 elements
301 nodes
566 degrees of freedom

AAVA
i

&

Fig.19 FINITE ELEMENT IDEALIZATION OF QUADRANT OF RECTANGULAR
SHEET WiTH CENTRALLY LOCATED HOLE
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EFFECTIVE STRESSES, IN ksi,
AT MAXIMUM ELASTIC LOAD

RECTANGULAR SHEET WITH A CENTRALLY LOCATED HOLE:
CONTOURS OF EFFECTIVE STRESS AT MAXIMUM LOAD .

Fig. 21

/
FIRST HALF CYCLE >
EFFECTIVE STRESSES

- | AT MAXIMUM LOAD in ksi

||
35 30 i
i

FIRST HALF CYCLE RESIDUAL
EFFECTIVE STRESSES

In ksi

FULL CYCLE EFFECTIVE
STRESSES AT MINIMUM
' LOAD

FULL CYCLE RESIDUAL EFFECTIVE STRESSES

\__/_’W

Fig.22. COUNTOURS OF EFFECTIVE STRESS DURING FIRST
CYCLE OF LOADING

216



AYVANNOEG JILSVd JILSVI3 40 HLMONYO

_1s¥g62=S

Pee>

€'0¢

gee

IS HEE-= S
ONIQVOINN

:370H Q3LVOO0T ATIVHLINIO V HLIM LI3HS HVINONVLOIY €2°Did

£6 ‘

bee

ONIAVOT

217



37T0H d31v00T ATIVHLINI3D V HLIM L3IFHS ¥VINONVLO3Y 2 Bid

AiDpunog 3J0Y {0 UID44S "SA $S4IS UOL}03S {3u 8|9AD sasyy (D)

0e-
EEEEE e O ¢l-
- v
O
sishjoup (g2yyen [ OF=
juawiiadxs P
i
g \.\
18)°G*SS24}S "}09S }3U [DURLON \\\
. Ob 0¢ o2 .7~
- =
s
\A\
/8
/
4 [72] i
- AV .41
/ . e
=
= o et —
®
02 o, 00=A :
=O.~ux ‘ .
uoiLpooj abob uipiys @ w
A

218



10 20 30
) -> Nominal net sect.stress, S ,ksi

40

Oand @ experiment, Ref 28

..4 .
analysis
-6
(b) One cycle net section stress vs. strain curve at x = 1.606", y=0.0"
1y
44
__-_EIBX..__’L
' - r. e
-4 -3 2o 10 20 30 40
2 Nominal sect. stress, S, ksi

/1 -4 ® and O experiment, Ref.28.

anolysis

-6

(c) One cycle net section vs. strain curve at x=1.952", y= .56l

Fig.24 (cont.) RECTANGULAR SHEET WITH A CENTRALLY
LOCATED HOLE
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o, |
e
6 x ] 4=
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$ 4 c I
\ 2 & |
25
-40 -30 -20 -1 * ! 210 3 40
@ Nomingl net section) stress. S, Ksi
. ®
oond@ Experiment,Ref. 28. \
Analysis -6
-.8
-10 \9

(d) One cycle net section stress vs. strain curve at x=1.952",y= 561"

y
®
2
OO
e
o
£
2
& K
-40 -30 -20 -10 ilo 2o 3o 4o
Nominal net section stress, S,ksi
O and ® Experiment,Ref28 _;
Analysis
]
(e) One cycle net section stress vs stroin curve at x =1.585", y= 1.229 "
by
b1
X "
. 45 o
| *4
N )
@
| €2
4
R &
-4{0 - -2 10 20 30 40

&

Nominal net section stress,S, ksi

O and @ Experiment, Ref. 28

dn

Analysis

(f) One cycle net section siress vs. sirain curve of x=1.585" y=1.229"

Fig. 24 (cont.) RECTANGULAR SHEET WITH A CENTRALLY
LOCATED HOLE



20

{O = 40 ksi I
Experiment

= i y S = 40 ksi
Ref2g |2 30 ks
16 0 = 20 ksi
Analysis
O
12 .
X
E TET $=30k M
; = si
3 8 i
>
[+
3 // /
S
- 4 —
o 4 © O A {j
& — s~ s
o = = \- §:20ksi
0
Y ! e % inches 3 4 5

Fig.25 RECTANGULAR SHEET WITH A CENTRALLY LOCATED HOLE: DISTRIBUTION OF
NORMAL STRAIN, ey ,ALONG HORIZONTAL AXIS OF SYMMETRY FOR FIRST
CYCLE OF LOADING

-20r— O S=40 ksi-| Experiment },
D S=20 ksi.) Ref.28
== e Analysis

..|s —

12
1=
®x -8
S
[}
£
-4
P & "
v . Ay -
OO
|
x inches 4 5

Fig.26 REGCTANGULAR SHEET WITH A CENTRALLY LOCATED HOLE : DISTRIBUTION OF
NORMAL STRAIN, ey . ALONG HORIZONTAL AXIS OF SYMMETRY FOR FIRST

CYCLE OF REVERSED LOADING.
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A Experiment (Griffith Ref (33))
4
A
Sy
G,
® 2 }-ﬁ
}__
| I I ] -
0 10 20 30 40

Nominal net section stress, S

Fig. 27 RECTANGULAR SHEET WITH CENTRALLY LOCATED HOLE:PLASTIC STRESS
CONCENTRATION FACTOR, 0/ 0,
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20 V4

T .

20 500 6/0 7/O>Load,ksi

L
o

, ksi

i
N
o

Circumferential Siress
o
o)

-60

Y y; — ———Assuming completely elastic unloading

704 £
,’| Fig.29 LOAD VERSUS CIRCUMFERENTIAL STRESS
AT INNER BOUNDARY

~80 /
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Fig.

Residual circumferential stress, ksi

Circumferential stress , ksi

CIRCUMFERENTIAL STRESS

40 > I T
8 'max=66.6ksa=\w’,,-~”
< -~ 533
a .—'"”‘-’ >
20 o o wam o = - 2= - - R
erT -—ss”/ --------
D e i e
e i I Tass
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0
.6 .5 4 3 .2 _ 0
Distance from edge of hole -in.
30 RADIAL DISTRIBUTION OF CIRCUMFERENTIAL STRESS
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o; ——L" ::':—N-
I Pl +53.2 ksi
gT_._._._
W - e s NSRS 2
0
=20
~-40
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Distance from edge of hole -in.
Fig. 31 RADIAL DISTRIBUTION OF RESIDUAL
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Displacement Assumption: €max | €
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Fig.32 TYPICAL ELASTIC-PLASTIC BEAM ELEMENT
( PURE BENDING)
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Displacement Assumptions:
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Initial Strain Distribution:
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Elastic-Plastic Boundary
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Fig.33 TYPICAL ELASTIC-PLASTIC BEAM ELEMENT

( BENDING AND AXIAL LOADS)



Displacement Assumption:

2 2
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Partially yielded sections

Fully yielded sections.

{a) Development of plastic region on the upper and lower surfacel
at the collapse load # = pa2l6 M, = 2.59

00 0.25 0.50 0.75 1.0 x/a
=(1).56;7 |
1.0 150 »=1.50 0.1 /
<1.50 | wD /
22 o 5 -2.00 2 “2m T
n // =241 °
o =2 0.2
0 0.25 0.50 0.75 1.0 x/a 2
p=pd =24]
0.3 Mo |
(b) Propagation of Elastic-Plastic Boundary Alongy = 0

(c) Deflection Profiles Alongy = 0
Fig. 46 Uniformly Loaded Clamped Square Plate
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7/ /7 /] partially yielded section

fully yielded section

b/a =0.333

)

2b e

~——-square hole
with free edges

2a =1

{a) Development of plostic region on the upper and
lower surfaces at collapse load, p= pa2 /6Mg =1.0]

Fig.47 UNIFORMLY LOADED SIMPLY SUPPORTED
SQUARE PLATE WITH SQUARE HOLE.
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